ترغب بنشر مسار تعليمي؟ اضغط هنا

FPT Algorithms for Connected Feedback Vertex Set

210   0   0.0 ( 0 )
 نشر من قبل Geevarghese Philip
 تاريخ النشر 2009
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the recently introduced Connected Feedback Vertex Set (CFVS) problem from the view-point of parameterized algorithms. CFVS is the connected variant of the classical Feedback Vertex Set problem and is defined as follows: given a graph G=(V,E) and an integer k, decide whether there exists a subset F of V, of size at most k, such that G[V F] is a forest and G[F] is connected. We show that Connected Feedback Vertex Set can be solved in time $O(2^{O(k)}n^{O(1)})$ on general graphs and in time $O(2^{O(sqrt{k}log k)}n^{O(1)})$ on graphs excluding a fixed graph H as a minor. Our result on general undirected graphs uses as subroutine, a parameterized algorithm for Group Steiner Tree, a well studied variant of Steiner Tree. We find the algorithm for Group Steiner Tree of independent interest and believe that it will be useful for obtaining parameterized algorithms for other connectivity problems.



قيم البحث

اقرأ أيضاً

The CONNECTED VERTEX COVER problem asks for a vertex cover in a graph that induces a connected subgraph. The problem is known to be fixed-parameter tractable (FPT), and is unlikely to have a polynomial sized kernel (under complexity theoretic assumpt ions) when parameterized by the solution size. In a recent paper, Lokshtanov et al.[STOC 2017], have shown an $alpha$-approximate kernel for the problem for every $alpha > 1$, in the framework of approximate or lossy kernelization. In this work, we exhibit lossy kernels and FPT algorithms for CONNECTED VERTEX COVER for parameters that are more natural and functions of the input, and in some cases, smaller than the solution size. The parameters we consider are the sizes of a split deletion set, clique deletion set, clique cover, cluster deletion set and chordal deletion set.
The Cut & Count technique and the rank-based approach have lead to single-exponential FPT algorithms parameterized by treewidth, that is, running in time $2^{O(tw)}n^{O(1)}$, for Feedback Vertex Set and connect
We introduce and study two natural generalizations of the Connected VertexCover (VC) problem: the $p$-Edge-Connected and $p$-Vertex-Connected VC problem (where $p geq 2$ is a fixed integer). Like Connected VC, both new VC problems are FPT, but do not admit a polynomial kernel unless $NP subseteq coNP/poly$, which is highly unlikely. We prove however that both problems admit time efficient polynomial sized approximate kernelization schemes. We obtain an $O(2^{O(pk)}n^{O(1)})$-time algorithm for the $p$-Edge-Connected VC and an $O(2^{O(k^2)}n^{O(1)})$-time algorithm for the $p$-Vertex-Connected VC. Finally, we describe a $2(p+1)$-approximation algorithm for the $p$-Edge-Connected VC. The proofs for the new VC problems require more sophisticated arguments than for Connected VC. In particular, for the approximation algorithm we use Gomory-Hu trees and for the approximate kernels a result on small-size spanning $p$-vertex/edge-connected subgraph of a $p$-vertex/edge-connected graph obtained independently by Nishizeki and Poljak (1994) and Nagamochi and Ibaraki (1992).
In the Directed Feedback Vertex Set (DFVS) problem, the input is a directed graph $D$ on $n$ vertices and $m$ edges, and an integer $k$. The objective is to determine whether there exists a set of at most $k$ vertices intersecting every directed cycl e of $D$. Whether or not DFVS admits a fixed parameter tractable (FPT) algorithm was considered the most important open problem in parameterized complexity until Chen, Liu, Lu, OSullivan and Razgon [JACM 2008] answered the question in the affirmative. They gave an algorithm for the problem with running time $O(k!4^kk^4nm)$. Since then, no faster algorithm for the problem has been found. In this paper, we give an algorithm for DFVS with running time $O(k!4^kk^5(n+m))$. Our algorithm is the first algorithm for DFVS with linear dependence on input size. Furthermore, the asymptotic dependence of the running time of our algorithm on the parameter $k$ matches up to a factor $k$ the algorithm of Chen, Liu, Lu, OSullivan and Razgon. On the way to designing our algorithm for DFVS, we give a general methodology to shave off a factor of $n$ from iterative-compression based algorithms for a few other well-studied covering problems in parameterized complexity. We demonstrate the applicability of this technique by speeding up by a factor of $n$, the current best FPT algorithms for Multicut [STOC 2011, SICOMP 2014] and Directed Subset Feedback Vertex Set [ICALP 2012, TALG 2014].
We show that the k-Dominating Set problem is fixed parameter tractable (FPT) and has a polynomial kernel for any class of graphs that exclude K_{i,j} as a subgraph, for any fixed i, j >= 1. This strictly includes every class of graphs for which this problem has been previously shown to have FPT algorithms and/or polynomial kernels. In particular, our result implies that the problem restricted to bounded- degenerate graphs has a polynomial kernel, solving an open problem posed by Alon and Gutner.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا