ﻻ يوجد ملخص باللغة العربية
We develop an analytical theory for quantum phase transitions driven by disorder in magnets and superconductors. We study these transitions with a cavity approximation which becomes exact on a Bethe lattice with large branching number. We find two different disordered phases, characterized by very different relaxation rates, which both exhibit strong inhomogeneities typical of glassy physics.
In most superconductors the transition to the superconducting state is driven by the binding of electrons into Cooper-pairs. The condensation of these pairs into a single, phase coherent, quantum state takes place concomitantly with their formation a
At finite temperatures and magnetic fields, type-II superconductors in the mixed state have a non-zero resistance that is overwhelmingly associated with vortex motion. In this work we study amorphous indium oxide films, which are thicker than the sup
The Aharonov-Casher effect is the analogue of the Aharonov-Bohm effect that applies to neutral particles carrying a magnetic moment. This can be manifested by vortices or fluxons flowing in trajectories that encompass an electric charge. These have
We use femtosecond optical spectroscopy to systematically measure the primary energy relaxation rate k1 of photoexcited carriers in cuprate and pnictide superconductors. We find that k1 increases monotonically with increased negative strain in the cr
Superconductor insulator transition in transverse magnetic field is studied in the highly disordered MoC film with the product of the Fermi momentum and the mean free path $k_F*l$ close to unity. Surprisingly, the Zeeman paramagnetic effects dominate