ترغب بنشر مسار تعليمي؟ اضغط هنا

Compact Star Clusters in the M31 Disk

399   0   0.0 ( 0 )
 نشر من قبل Donatas Narbutis
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف V. Vansevicius




اسأل ChatGPT حول البحث

We have carried out a survey of compact star clusters (apparent size <3 arcsec) in the southwest part of the M31 galaxy, based on the high-resolution Suprime-Cam images (17.5 arcmin x 28.5 arcmin), covering ~15% of the deprojected galaxy disk area. The UBVRI photometry of 285 cluster candidates (V < 20.5 mag) was performed using frames of the Local Group Galaxies Survey. The final sample, containing 238 high probability star cluster candidates (typical half-light radius r_h ~ 1.5 pc), was selected by specifying a lower limit of r_h > 0.15 arcsec (>0.6 pc). We derived cluster parameters based on the photometric data and multiband images by employing simple stellar population models. The clusters have a wide range of ages from ~5 Myr (young objects associated with 24 um and/or Ha emission) to ~10 Gyr (globular cluster candidates), and possess mass in a range of 3.0 < log(m/M_sol) < 4.3 peaking at m ~ 4000 M_sol. Typical age of these intermediate-mass clusters is in the range of 30 Myr < t < 3 Gyr, with a prominent peak at ~70 Myr. These findings suggest a rich intermediate-mass star cluster population in M31, which appears to be scarce in the Milky Way galaxy.



قيم البحث

اقرأ أيضاً

293 - Luciana Federici 2012
Thanks to the outstanding capabilites of the HST, our current knowledge about the M31 globular clusters (GCs) is similar to our knowledge of the Milky Way GCs in the 1960s-1970s, which set the basis for studying the halo and galaxy formation using th ese objects as tracers, and established their importance in defining the cosmic distance scale. We intend to derive a new calibration of the M_V(HB)-[Fe/H] relation by exploiting the large photometric database of old GCs in M31 in the HST archive. We collected the BVI data for 48 old GCs in M31 and analysed them by applying the same methods and procedures to all objects. We obtained a set of homogeneous colour-magnitude diagrams (CMDs) that were best-fitted with the fiducial CMD ridge lines of selected Milky Way template GCs. Reddening, metallicity, Horizontal Branch (HB) luminosity and distance were determined self-consistently for each cluster. There are three main results of this study: i) the relation M_V(HB)=(0.25+/-0.02)[Fe/H]+(0.89+/-0.03), which is obtained from the above parameters and is calibrated on the distances of the template Galactic GCs; ii) the distance modulus to M31 of (m-M)_0=24.42+/-0.06 mag, obtained by normalising this relation at the reference value of [Fe/H]=-1.5 to a similar relation using V_0(HB). This is the first determination of the distance to M31 based on the characteristics of its GC system which is calibrated on Galactic GCs; iii) the distance to the Large Magellanic Cloud (LMC), which is estimated to be 18.54+/-0.07 mag as a consequence of the previous results. These values agree excellently with the most recent estimate based on HST parallaxes of Galactic Cepheid and RR Lyrae stars, as well as with recent methods.
We have undertaken the largest systematic study of the high-mass stellar initial mass function (IMF) to date using the optical color-magnitude diagrams (CMDs) of 85 resolved, young (4 Myr < t < 25 Myr), intermediate mass star clusters (10^3-10^4 Msun ), observed as part of the Panchromatic Hubble Andromeda Treasury (PHAT) program. We fit each clusters CMD to measure its mass function (MF) slope for stars >2 Msun. For the ensemble of clusters, the distribution of stellar MF slopes is best described by $Gamma=+1.45^{+0.03}_{-0.06}$ with a very small intrinsic scatter. The data also imply no significant dependencies of the MF slope on cluster age, mass, and size, providing direct observational evidence that the measured MF represents the IMF. This analysis implies that the high-mass IMF slope in M31 clusters is universal with a slope ($Gamma=+1.45^{+0.03}_{-0.06}$) that is steeper than the canonical Kroupa (+1.30) and Salpeter (+1.35) values. Using our inference model on select Milky Way (MW) and LMC high-mass IMF studies from the literature, we find $Gamma_{rm MW} sim+1.15pm0.1$ and $Gamma_{rm LMC} sim+1.3pm0.1$, both with intrinsic scatter of ~0.3-0.4 dex. Thus, while the high-mass IMF in the Local Group may be universal, systematics in literature IMF studies preclude any definitive conclusions; homogenous investigations of the high-mass IMF in the local universe are needed to overcome this limitation. Consequently, the present study represents the most robust measurement of the high-mass IMF slope to date. We have grafted the M31 high-mass IMF slope onto widely used sub-solar mass Kroupa and Chabrier IMFs and show that commonly used UV- and Halpha-based star formation rates should be increased by a factor of ~1.3-1.5 and the number of stars with masses >8 Msun are ~25% fewer than expected for a Salpeter/Kroupa IMF. [abridged]
123 - D. Narbutis 2006
We present the results of UBVRI broad-band aperture CCD photometry of 51 compact star clusters located in the South-West part of the M31 disk. The mean rms errors of all measured star cluster colors are less than 0.02 mag. In color vs. color diagrams the star clusters show significantly tighter sequences when compared with the photometric data from the compiled catalog of the M31 star clusters published by Galleti et al. (2004).
60 - I. Sableviciute 2007
We present structural parameters for 51 compact star clusters from the survey of star clusters conducted in the South-West field of the M31 disk by Kodaira et al. (2004). Structural parameters of the clusters were derived by fitting the 2-D King and EFF (Elson, Fall and Freeman 1987) models to the V-band cluster images. Structural parameters derived for two M31 clusters, which are in common with the study based on the HST data (Barmby et al. 2002), are consistent with earlier determination. The M31 star cluster structural parameters in general are compatible with the corresponding Milky Way galaxy and Magellanic Clouds cluster parameters.
We analyze our accurate kinematical data for the old clusters in the inner regions of M31. These velocities are based on high S/N Hectospec data (Caldwell et al 2010). The data are well suited for analysis of M31s inner regions because we took partic ular care to correct for contamination by unresolved field stars from the disk and bulge in the fibers. The metal poor clusters show kinematics which are compatible with a pressure-supported spheroid. The kinematics of metal-rich clusters, however, argue for a disk population. In particular the innermost region (inside 2 kpc) shows the kinematics of the x2 family of bar periodic orbits, arguing for the existence of an inner Lindblad resonance in M31.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا