ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous diffusion in the dynamics of complex processes

160   0   0.0 ( 0 )
 نشر من قبل Yuriy Polyakov
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Anomalous diffusion, process in which the mean-squared displacement of system states is a non-linear function of time, is usually identified in real stochastic processes by comparing experimental and theoretical displacements at relatively small time intervals. This paper proposes an interpolation expression for the identification of anomalous diffusion in complex signals for the cases when the dynamics of the system under study reaches a steady state (large time intervals). This interpolation expression uses the chaotic difference moment (transient structural function) of the second order as an average characteristic of displacements. A general procedure for identifying anomalous diffusion and calculating its parameters in real stochastic signals, which includes the removal of the regular (low-frequency) components from the source signal and the fitting of the chaotic part of the experimental difference moment of the second order to the interpolation expression, is presented. The procedure was applied to the analysis of the dynamics of magnetoencephalograms, blinking fluorescence of quantum dots, and X-ray emission from accreting objects. For all three applications, the interpolation was able to adequately describe the chaotic part of the experimental difference moment, which implies that anomalous diffusion manifests itself in these natural signals. The results of this study make it possible to broaden the range of complex natural processes in which anomalous diffusion can be identified. The relation between the interpolation expression and a diffusion model, which is derived in the paper, allows one to simulate the chaotic processes in the open complex systems with anomalous diffusion.



قيم البحث

اقرأ أيضاً

We propose an interpolation expression using the difference moment (Kolmogorov transient structural function) of the second order as the average characteristic of displacements for identifying the anomalous diffusion in complex processes when the sto chastic dynamics of the system under study reaches a steady state (large time intervals). Our procedure based on this expression for identifying anomalous diffusion and calculating its parameters in complex processes is applied to the analysis of the dynamics of blinking fluorescence of quantum dots, X-ray emission from accreting objects, fluid velocity in Rayleigh-Benard convection, and geoelectrical signal for a seismic area. For all four examples, the proposed interpolation is able to adequately describe the stochastic part of the experimental difference moment, which implies that anomalous diffusion manifests itself in these complex processes. The results of this study make it possible to broaden the range of complex natural processes in which anomalous diffusion can be identified.
Deviations from Brownian motion leading to anomalous diffusion are ubiquitously found in transport dynamics, playing a crucial role in phenomena from quantum physics to life sciences. The detection and characterization of anomalous diffusion from the measurement of an individual trajectory are challenging tasks, which traditionally rely on calculating the mean squared displacement of the trajectory. However, this approach breaks down for cases of important practical interest, e.g., short or noisy trajectories, ensembles of heterogeneous trajectories, or non-ergodic processes. Recently, several new approaches have been proposed, mostly building on the ongoing machine-learning revolution. Aiming to perform an objective comparison of methods, we gathered the community and organized an open competition, the Anomalous Diffusion challenge (AnDi). Participating teams independently applied their own algorithms to a commonly-defined dataset including diverse conditions. Although no single method performed best across all scenarios, the results revealed clear differences between the various approaches, providing practical advice for users and a benchmark for developers.
We investigate the time evolution of the scores of the second most popular sport in world: the game of cricket. By analyzing the scores event-by-event of more than two thousand matches, we point out that the score dynamics is an anomalous diffusive p rocess. Our analysis reveals that the variance of the process is described by a power-law dependence with a super-diffusive exponent, that the scores are statistically self-similar following a universal Gaussian distribution, and that there are long-range correlations in the score evolution. We employ a generalized Langevin equation with a power-law correlated noise that describe all the empirical findings very well. These observations suggest that competition among agents may be a mechanism leading to anomalous diffusion and long-range correlation.
Anomalous diffusion or, more generally, anomalous transport, with nonlinear dependence of the mean-squared displacement on the measurement time, is ubiquitous in nature. It has been observed in processes ranging from microscopic movement of molecules to macroscopic, large-scale paths of migrating birds. Using data from multiple empirical systems, spanning 12 orders of magnitude in length and 8 orders of magnitude in time, we employ a method to detect the individual underlying origins of anomalous diffusion and transport in the data. This method decomposes anomalous transport into three primary effects: long-range correlations (Joseph effect), fat-tailed probability density of increments (Noah effect), and non-stationarity (Moses effect). We show that such a decomposition of real-life data allows to infer nontrivial behavioral predictions, and to resolve open questions in the fields of single particle cell tracking and movement ecology.
A general method is proposed which allows one to estimate drift and diffusion coefficients of a stochastic process governed by a Langevin equation. It extends a previously devised approach [R. Friedrich et al., Physics Letters A 271, 217 (2000)], whi ch requires sufficiently high sampling rates. The analysis is based on an iterative procedure minimizing the Kullback-Leibler distance between measured and estimated two time joint probability distributions of the process.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا