ترغب بنشر مسار تعليمي؟ اضغط هنا

Classical versus quantum dynamics of the atomic Josephson junction

134   0   0.0 ( 0 )
 نشر من قبل Duncan O'Dell
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We compare the classical (mean-field) dynamics with the quantum dynamics of atomic Bose-Einstein condensates in double-well potentials. The quantum dynamics are computed using a simple scheme based upon the Raman-Nath equations. Two different methods for exciting a non-equilbrium state are considered: an asymmetry between the wells which is suddenly removed, and a periodic time oscillating asymmetry. The first method generates wave packets that lead to collapses and revivals of the expectation values of the macroscopic variables, and we calculate the time scale for these revivals. The second method permits the excitation of a single energy eigenstate of the many-particle system, including Schroedinger cat states. We also discuss a band theory interpretation of the energy level structure of an asymmetric double-well, thereby identifying analogies to Bloch oscillations and Bragg resonances. Both the Bloch and Bragg dynamics are purely quantum and are not contained in the mean-field treatment.



قيم البحث

اقرأ أيضاً

203 - K. Xhani , E. Neri , L. Galantucci 2019
We study the onset of dissipation in an atomic Josephson junction between Fermi superfluids in the molecular Bose-Einstein condensation limit of strong attraction. Our simulations identify the critical population imbalance and the maximum Josephson c urrent delimiting dissipationless and dissipative transport, in quantitative agreement with recent experiments. We unambiguously link dissipation to vortex ring nucleation and dynamics, demonstrating that quantum phase slips are responsible for the observed resistive current. Our work directly connects microscopic features with macroscopic dissipative transport, providing a comprehensive description of vortex ring dynamics in three-dimensional inhomogeneous constricted superfluids at zero and finite temperatures.
The out-of-equilibrium quantum dynamics of an interacting Bose gas trapped in a 1D asymmetric double-well potential is studied by solving the many-body Schrodinger equation numerically accurately. We examine how the loss of symmetry of the confining trap affects the macroscopic quantum tunneling dynamics of the system between the two wells. In an asymmetric DW, the two wells are not equivalent anymore -the left well is deeper than the right one. Accordingly, we analyze the dynamics by initially preparing the condensate in both the left and the right well. We examined the frequencies and amplitudes of the oscillations of the survival probabilities, the time scale for the development of fragmentation and its degree, and the growth and oscillatory behavior of the many-body position and momentum variances. There is an overall suppression of the oscillations of the survival probabilities in an asymmetric double well. However, depending on whether the condensate is initially prepared in the left or right well, the repulsive inter-atomic interactions affect the survival probabilities differently. The degree of fragmentation depends both on the asymmetry of the trap and the initial well in which the condensate is prepared in a non-trivial manner. Overall, the many-body position and momentum variances bear the prominent signatures of the density oscillations of the system in the asymmetric double well as well as a breathing-mode oscillation. Finally, a universality of fragmentation for systems made of different numbers of particles but the same interaction parameter is also found. The phenomenon is robust despite the asymmetry of the junction and admits a macroscopically-large fragmented condensate characterized by a diverging many-body position variance.
We propose to dynamically control the conductivity of a Josephson junction composed of two weakly coupled one dimensional condensates of ultracold atoms. A current is induced by a periodically modulated potential difference between the condensates, g iving access to the conductivity of the junction. By using parametric driving of the tunneling energy, we demonstrate that the low-frequency conductivity of the junction can be enhanced or suppressed, depending on the choice of the driving frequency. The experimental realization of this proposal provides a quantum simulation of optically enhanced superconductivity in pump-probe experiments of high temperature superconductors.
The out-of-equilibrium quantum dynamics of a bosonic Josephson junction (BJJ) with long-range interaction is studied in real space by solving the time-dependent many-body Schrodinger equation numerically accurately using the multiconfigurational time -dependent Hartree method for bosons. Having the many-boson wave-function at hand we can examine the impact of the range of the interaction on the properties of the BJJ dynamics, viz. density oscillations and their collapse, self trapping, depletion and fragmentation, as well as the position variance, both at the mean-field and many-body level. Explicitly, the frequency of the density oscillations and the time required for their collapse, the value of fragmentation at the plateau, the maximal and the minimal values of the position variance in each cycle of oscillation and the overall pace of its growth are key to our study. We find competitive effect between the interaction and the confining trap. The presence of the tail part of the interaction basically enhances the effective repulsion as the range of the interaction is increased starting from a short, finite range. But as the range becomes comparable with the trap size, the system approaches a situation where all the atoms feel a constant potential and the impact of the tail on the dynamics diminishes. There is an optimal range of the interaction in which physical quantities of the junction are attaining their extreme values.
We investigate an atomic ensemble of interacting bosons trapped in a symmetric double well potential in contact with a single tightly trapped ion which has been recently proposed [R. Gerritsma et al., Phys. Rev. Lett. 109, 080402 (2012)] as a source of entanglement between a Bose-Einstein condensate and an ion. Compared to the previous study, the present work aims at performing a detailed and accurate many-body analysis of such combined atomic quantum system by means of the ab-initio multi-configuration time-dependent Hartree method for bosons, which allows to take into account all correlations in the system. The analysis elucidates the importance of quantum correlations in the bosonic ensemble and reveals that entanglement generation between an ion and a condensate is indeed possible, as previously predicted. Moreover, we provide an intuitive picture of the impact of the correlations on the out-of-equilibrium dynamics by employing a natural orbital analysis which we show to be indeed experimentally verifiable.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا