ترغب بنشر مسار تعليمي؟ اضغط هنا

Coalescing binaries as possible standard candles

127   0   0.0 ( 0 )
 نشر من قبل Salvatore Capozziello
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gravitational waves detected from well-localized inspiraling binaries would allow to determine, directly and independently, both binary luminosity and redshift. In this case, such systems could behave as standard candles providing an excellent probe of cosmic distances up to $z <0.1$ and thus complementing other indicators of cosmological distance ladder.



قيم البحث

اقرأ أيضاً

Coalescing binary systems, consisting of two collapsed objects, are among the most promising sources of high frequency gravitational waves signals detectable, in principle, by ground-based interferometers. Binary systems of Neutron Star or Black Hole /Neutron Star mergers should also give rise to short Gamma Ray Bursts, a subclass of Gamma Ray Bursts. Short-hard-Gamma Ray Bursts might thus provide a powerful way to infer the merger rate of two-collapsed object binaries. Under the hypothesis that most short Gamma Ray Bursts originate from binaries of Neutron Star or Black Hole/Neutron Star mergers, we outline here the possibility to associate short Gamma Ray Bursts as electromagnetic counterpart of coalescing binary systems.
145 - Kengo Iwata , Chul-Moon Yoo 2014
We investigate the effect of small scale inhomogeneities on standard candle observations, such as type Ia supernovae (SNe) observations. Existence of the small scale inhomogeneities may cause a tension between SNe observations and other observations with larger diameter sources, such as the cosmic microwave background (CMB) observation. To clarify the impact of the small scale inhomogeneities, we use the Dyer-Roeder approach. We determined the smoothness parameter $alpha(z)$ as a function of the redshift $z$ so as to compensate the deviation of cosmological parameters for SNe from those for CMB. The range of the deviation which can be compensated by the smoothness parameter $alpha(z)$ satisfying $0leqalpha(z)leq1$ is reported. Our result suggests that the tension may give us the information of the small scale inhomogeneities through the smoothness parameter.
Soon the number of type Ia supernova (SN) measurements should exceed 100,000. Understanding the effect of weak lensing by matter structures on the supernova brightness will then be more important than ever. Although SN lensing is usually seen as a so urce of systematic noise, we will show that it can be in fact turned into signal. More precisely, the non-Gaussianity introduced by lensing in the SN Hubble diagram dispersion depends rather sensitively on the amplitude sigma8 of the matter power spectrum. By exploiting this relation, we are able to predict constraints on sigma8 of 7% (3%) for a catalog of 100,000 (500,000) SNe of average magnitude error 0.12 without having to assume that such intrinsic dispersion is known a priori. The intrinsic dispersion has been assumed to be Gaussian; possible intrinsic non-Gaussianities in the dataset (due to the SN themselves and/or to other transients) could be potentially dealt with by means of additional nuisance parameters describing higher moments of the intrinsic dispersion distribution function. This method is independent of and complementary to the standard methods based on CMB, cosmic shear or cluster abundance observables.
We make precise the heretofore ambiguous statement that anisotropic stress is a sign of a modification of gravity. We show that in cosmological solutions of very general classes of models extending gravity --- all scalar-tensor theories (Horndeski), Einstein-Aether models and bimetric massive gravity --- a direct correspondence exists between perfect fluids apparently carrying anisotropic stress and a modification in the propagation of gravitational waves. Since the anisotropic stress can be measured in a model-independent manner, a comparison of the behavior of gravitational waves from cosmological sources with large-scale-structure formation could in principle lead to new constraints on the theory of gravity.
For a large class of dark energy (DE) models, for which the effective gravitational constant is a constant and there is no direct exchange of energy between DE and dark matter (DM), knowledge of the expansion history suffices to reconstruct the growt h factor of linearized density perturbations in the non-relativistic matter component on scales much smaller than the Hubble distance. In this paper we develop a non-parametric method for extracting information about the perturbative growth factor from data pertaining to the luminosity or angular size distances. A comparison of the reconstructed density contrast with observations of large scale structure and gravitational lensing can help distinguish DE models such as the cosmological constant and quintessence from models based on modified gravity theories as well as models in which DE and DM are either unified, or interact directly. We show that for current SNe data, the linear growth factor at z = 0.3 can be constrained to 5%, and the linear growth rate to 6%. With future SNe data, such as expected from the JDEM mission, we may be able to constrain the growth factor to 2-3% and the growth rate to 3-4% at z = 0.3 with this unbiased, model-independent reconstruction method. For future BAO data which would deliver measurements of both the angular diameter distance and Hubble parameter, it should be possible to constrain the growth factor at z = 2.5 to 9%. These constraints grow tighter with the errors on the datasets. With a large quantity of data expected in the next few years, this method can emerge as a competitive tool for distinguishing between different models of dark energy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا