ﻻ يوجد ملخص باللغة العربية
The third generation of gravitational wave observatories, aiming to provide 100 times better sensitivity than currently operating interferometers, is expected to establish the evolving field of gravitational wave astronomy. A key element for achieving the ambitious sensitivity goal is the exploration of new interferometer geometries, topologies and configurations. In this article we review the current status of the ongoing design work for third-generation gravitational wave observatories. The main focus is set on the evaluation of the detector geometry and detector topology. In addition we discuss some promising detector configurations and potential noise reduction schemes.
Advanced gravitational wave detectors, currently under construction, are expected to directly observe gravitational wave signals of astrophysical origin. The Einstein Telescope, a third-generation gravitational wave detector, has been proposed in ord
The upcoming European design study `Einstein gravitational-wave Telescope represents the first step towards a substantial, international effort for the design of a third-generation interferometric gravitational wave detector. It is generally believed
Third-generation (3G) gravitational-wave detectors will observe thousands of coalescing neutron star binaries with unprecedented fidelity. Extracting the highest precision science from these signals is expected to be challenging owing to both high si
In the past few years, the detection of gravitational waves from compact binary coalescences with the Advanced LIGO and Advanced Virgo detectors has become routine. Future observatories will detect even larger numbers of gravitational-wave signals, w
The recent detections of gravitational waves (GWs) reported by LIGO/Virgo collaborations have made significant impact on physics and astronomy. A global network of GW detectors will play a key role to solve the unknown nature of the sources in coordi