ﻻ يوجد ملخص باللغة العربية
We prove a constant term theorem which is useful for finding weight polynomials for Ballot/Motzkin paths in a strip with a fixed number of arbitrary `decorated weights as well as an arbitrary `background weight. Our CT theorem, like Viennots lattice path theorem from which it is derived primarily by a change of variable lemma, is expressed in terms of orthogonal polynomials which in our applications of interest often turn out to be non-classical. Hence we also present an efficient method for finding explicit closed form polynomial expressions for these non-classical orthogonal polynomials. Our method for finding the closed form polynomial expressions relies on simple combinatorial manipulations of Viennots diagrammatic representation for orthogonal polynomials. In the course of the paper we also provide a new proof of Viennots original orthogonal polynomial lattice path theorem. The new proof is of interest because it uses diagonalization of the transfer matrix, but gets around difficulties that have arisen in past attempts to use this approach. In particular we show how to sum over a set of implicitly defined zeros of a given orthogonal polynomial, either by using properties of residues or by using partial fractions. We conclude by applying the method to two lattice path problems important in the study of polymer physics as models of steric stabilization and sensitized flocculation.
Orbit functions of a simple Lie group/Lie algebra L consist of exponential functions summed up over the Weyl group of L. They are labeled by the highest weights of irreducible finite dimensional representations of L. They are of three types: C-, S- a
A word $sigma=sigma_1...sigma_n$ over the alphabet $[k]={1,2,...,k}$ is said to be {em smooth} if there are no two adjacent letters with difference greater than 1. A word $sigma$ is said to be {em smooth cyclic} if it is a smooth word and in addition
We obtain asymptotics in n for the n-dimensional Hankel determinant whose symbol is the Gaussian multiplied by a step-like function. We use Riemann-Hilbert analysis of the related system of orthogonal polynomials to obtain our results.
Motivated by the Gaussian symplectic ensemble, Mehta and Wang evaluated the $n$ by $n$ determinant $det((a+j-i)Gamma(b+j+i))$ in 2000. When $a=0$, Ciucu and Krattenthaler computed the associated Pfaffian $Pf((j-i)Gamma(b+j+i))$ with an application to
Trace estimators allow to approximate thermodynamic equilibrium observables with astonishing accuracy. A prominent representative is the finite-temperature Lanczos method (FTLM) which relies on a Krylov space expansion of the exponential describing t