ترغب بنشر مسار تعليمي؟ اضغط هنا

LoCuSS: A Comparison of Sunyaev-Zeldovich Effect and Gravitational Lensing Measurements of Galaxy Clusters

240   0   0.0 ( 0 )
 نشر من قبل Daniel Marrone
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Daniel P. Marrone




اسأل ChatGPT حول البحث

We present the first measurement of the relationship between the Sunyaev-Zeldovich effect signal and the mass of galaxy clusters that uses gravitational lensing to measure cluster mass, based on 14 X-ray luminous clusters at z~0.2 from the Local Cluster Substructure Survey. We measure the integrated Compton y-parameter, Y, and total projected mass of the clusters (M_GL) within a projected clustercentric radius of 350 kpc, corresponding to mean overdensities of 4000-8000 relative to the critical density. We find self-similar scaling between M_GL and Y, with a scatter in mass at fixed Y of 32%. This scatter exceeds that predicted from numerical cluster simulations, however, it is smaller than comparable measurements of the scatter in mass at fixed T_X. We also find no evidence of segregation in Y between disturbed and undisturbed clusters, as had been seen with T_X on the same physical scales. We compare our scaling relation to the Bonamente et al. relation based on mass measurements that assume hydrostatic equilibrium, finding no evidence for a hydrostatic mass bias in cluster cores (M_GL = 0.98+/-0.13 M_HSE), consistent with both predictions from numerical simulations and lensing/X-ray-based measurements of mass-observable scaling relations at larger radii. Overall our results suggest that the Sunyaev-Zeldovich effect may be less sensitive than X-ray observations to the details of cluster physics in cluster cores.



قيم البحث

اقرأ أيضاً

We present the first weak-lensing-based scaling relation between galaxy cluster mass, M_wl, and integrated Compton parameter Y_sph. Observations of 18 galaxy clusters at z~0.2 were obtained with the Subaru 8.2-m telescope and the Sunyaev-Zeldovich Ar ray. The M_wl-Y_sph scaling relations, measured at Delta=500, 1000, and 2500 rho_c, are consistent in slope and normalization with previous results derived under the assumption of hydrostatic equilibrium (HSE). We find an intrinsic scatter in M_wl at fixed Y_sph of 20%, larger than both previous measurements of M_HSE-Y_sph scatter as well as the scatter in true mass at fixed Y_sph found in simulations. Moreover, the scatter in our lensing-based scaling relations is morphology dependent, with 30-40% larger M_wl for undisturbed compared to disturbed clusters at the same Y_sph at r_500. Further examination suggests that the segregation may be explained by the inability of our spherical lens models to faithfully describe the three-dimensional structure of the clusters, in particular, the structure along the line-of-sight. We find that the ellipticity of the brightest cluster galaxy, a proxy for halo orientation, correlates well with the offset in mass from the mean scaling relation, which supports this picture. This provides empirical evidence that line-of-sight projection effects are an important systematic uncertainty in lensing-based scaling relations.
We present an analysis of observations made with the Arcminute Microkelvin Imager (AMI) and the Canada-France-Hawaii Telescope (CFHT) of six galaxy clusters in a redshift range of 0.16--0.41. The cluster gas is modelled using the Sunyaev--Zeldovich ( SZ) data provided by AMI, while the total mass is modelled using the lensing data from the CFHT. In this paper, we: i) find very good agreement between SZ measurements (assuming large-scale virialisation and a gas-fraction prior) and lensing measurements of the total cluster masses out to r_200; ii) perform the first multiple-component weak-lensing analysis of A115; iii) confirm the unusual separation between the gas and mass components in A1914; iv) jointly analyse the SZ and lensing data for the relaxed cluster A611, confirming our use of a simulation-derived mass-temperature relation for parameterizing measurements of the SZ effect.
This paper continues a series in which we intend to show how all observables of galaxy clusters can be combined to recover the two-dimensional, projected gravitational potential of individual clusters. Our goal is to develop a non-parametric algorith m for joint cluster reconstruction taking all cluster observables into account. In this paper, we begin with the relation between the Compton-y parameter and the Newtonian gravitational potential, assuming hydrostatic equilibrium and a polytropic stratification of the intracluster gas. We show how Richardson-Lucy deconvolution can be used to convert the intensity change of the CMB due to the thermal Sunyaev-Zeldovich effect into an estimate for the two-dimensional gravitational potential. Synthetic data simulated with characteristics of the ALMA telescope show that the two-dimensional potential of a cluster with mass 5*10^14 M_sun/h at redshift 0.2 is possible with an error of < 5% between the cluster centre and a radius r < 0.9 Mpc/h.
We have measured the Sunyaev Zeldovich (SZ) effect for a sample of ten strong lensing selected galaxy clusters using the Sunyaev Zeldovich Array (SZA). The SZA is sensitive to structures on spatial scales of a few arcminutes, while the strong lensing mass modeling constrains the mass at small scales (typically < 30). Combining the two provides information about the projected concentrations of the strong lensing clusters. The Einstein radii we measure are twice as large as expected given the masses inferred from SZ scaling relations. A Monte Carlo simulation indicates that a sample randomly drawn from the expected distribution would have a larger median Einstein radius than the observed clusters about 3% of the time. The implied overconcentration has been noted in previous studies with smaller samples of lensing clusters. It persists for this sample, with the caveat that this could result from a systematic effect such as if the gas fractions of the strong lensing clusters are substantially below what is expected.
The use of galaxy clusters as precision cosmological probes relies on an accurate determination of their masses. However, inferring the relationship between cluster mass and observables from direct observations is difficult and prone to sample select ion biases. In this work, we use weak lensing as the best possible proxy for cluster mass to calibrate the Sunyaev-Zeldovich (SZ) effect measurements from the APEX-SZ experiment. For a well-defined (ROSAT) X-ray complete cluster sample, we calibrate the integrated Comptonization parameter, $Y_{rm SZ}$, to the weak-lensing derived total cluster mass, $M_{500}$. We employ a novel Bayesian approach to account for the selection effects by jointly fitting both the SZ Comptonization, $Y_{rm SZ}text{--}M_{500}$, and the X-ray luminosity, $L_{rm x}text{--}M_{500}$, scaling relations. We also account for a possible correlation between the intrinsic (log-normal) scatter of $L_{rm x}$ and $Y_{rm SZ}$ at fixed mass. We find the corresponding correlation coefficient to be $r= 0.47_{-0.35}^{+0.24}$, and at the current precision level our constraints on the scaling relations are consistent with previous works. For our APEX-SZ sample, we find that ignoring the covariance between the SZ and X-ray observables biases the normalization of the $Y_{rm SZ}text{--}M_{500}$ scaling high by $1text{--}2sigma$ and the slope low by $sim 1sigma$, even when the SZ effect plays no role in the sample selection. We conclude that for higher-precision data and larger cluster samples, as anticipated from on-going and near-future cluster cosmology experiments, similar biases (due to intrinsic covariances of cluster observables) in the scaling relations will dominate the cosmological error budget if not accounted for correctly.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا