ﻻ يوجد ملخص باللغة العربية
Co$_{4}$B$_{6}$O$_{13}$ contains undistorted tetrahedral clusters of magnetic Co$^{2+}$ ions. The high-field magnetization of this magnet exhibits a periodic undulation indicating quantization of the total spin number per cluster. Measurements of magnetic susceptibility and specific heat reveal that the ground state is composed of several different singlet states, reflecting the high symmetry of the spin tetrahedron. An exact diagonalization calculation taking account of single-ion type anisotropies and Dzyaloshinsky-Moriya interactions reproduces the expretimental results very well.
Neutron scattering studies on powder and single crystals have provided new evidences for unconventional magnetism in Cu2Te2O5Cl2. The compound is built from tetrahedral clusters of S=1/2 Cu2+ spins located on a tetragonal lattice. Magnetic ordering,
We have investigated the thermodynamic and local magnetic properties of the Mott insulating system Ag$_{3}$LiRu$_{2}$O$_{6}$ containing Ru$^{4+}$ (4$d$$^{4}$) for novel magnetism. The material crystallizes in a monoclinic $C2/m$ structure with RuO$_{
H3LiIr2O6 is the first honeycomb-lattice system without any signs of long-range magnetic order down to the lowest temperatures, raising the hope for the realization of an ideal Kitaev quantum spin liquid. Its honeycomb layers are coupled by interlaye
The magnetic Hamiltonian of the Heisenberg quantum antiferromagnet SrCuTe$_{2}$O$_{6}$ is studied by inelastic neutron scattering technique on powder and single crystalline samples above and below the magnetic transition temperatures at 8 K and 2 K.
$alpha$-CoV$_{2}$O$_{6}$ consists of $j_{mathrm{eff}}={1 over 2}$ Ising spins located on an anisotropic triangular motif with magnetization plateaus in an applied field. We combine neutron diffraction with low temperature magnetization to investigate