ﻻ يوجد ملخص باللغة العربية
In this work we will develop the canonical structure of Podolskys generalized electrodynamics on the null-plane. This theory has second-order derivatives in the Lagrangian function and requires a closer study for the definition of the momenta and canonical Hamiltonian of the system. On the null-plane the field equations also demand a different analysis of the initial-boundary value problem and proper conditions must be chosen on the null-planes. We will show that the constraint structure, based on Dirac formalism, presents a set of second-class constraints, which are exclusive of the analysis on the null-plane, and an expected set of first-class constraints that are generators of a U(1) group of gauge transformations. An inspection on the field equations will lead us to the generalized radiation gauge on the null-plane, and Dirac Brackets will be introduced considering the problem of uniqueness of these brackets under the chosen initial-boundary condition of the theory.
We confirm the stability of Podolskys generalized electrodynamics by constructing a series of two-parametric bounded conserved quantities which includes the canonical energy-momentum tensors. In addition, we evaluate the transition-amplitude of this
We have studied the null-plane hamiltonian structure of the free Yang-Mills fields and the scalar chromodynamics ($SQCD_{4}$). Following the Diracs procedure for constrained systems we have performed a detailed analysis of the constraint structure of
We studied the scalar electrodynamics ($SQED_{4}$) and the spinor electrodynamics ($QED_{4}$) in the null-plane formalism. We followed the Diracs technique for constrained systems to perform a detailed analysis of the constraint structure in both the
We analyze the component structure of models for 4D N = 1 supersymmetric nonlinear electrodynamics that enjoy invariance under continuous duality rotations. The N = 1 supersymmetric Born-Infeld action is a member of this family. Such dynamical system
A dynamical model is applied to the study of the pion valence light-front wave function, obtained from the actual solution of the Bethe-Salpeter equation in Minkowski space, resorting to the Nakanishi integral representation. The kernel is simplified