ترغب بنشر مسار تعليمي؟ اضغط هنا

Cassini/VIMS hyperspectral observations of the HUYGENS landing site on Titan

132   0   0.0 ( 0 )
 نشر من قبل Sebastien Rodriguez
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. Rodriguez




اسأل ChatGPT حول البحث

Titan is one of the primary scientific objectives of the NASA ESA ASI Cassini Huygens mission. Scattering by haze particles in Titans atmosphere and numerous methane absorptions dramatically veil Titans surface in the visible range, though it can be studied more easily in some narrow infrared windows. The Visual and Infrared Mapping Spectrometer (VIMS) instrument onboard the Cassini spacecraft successfully imaged its surface in the atmospheric windows, taking hyperspectral images in the range 0.4 5.2 ?m. On 26 October (TA flyby) and 13 December 2004 (TB flyby), the Cassini Huygens mission flew over Titan at an altitude lower than 1200 km at closest approach. We report here on the analysis of VIMS images of the Huygens landing site acquired at TA and TB, with a spatial resolution ranging from 16 to14.4 km/pixel. The pure atmospheric backscattering component is corrected by using both an empirical method and a first-order theoretical model. Both approaches provide consistent results. After the removal of scattering, ratio images reveal subtle surface heterogeneities. A particularly contrasted structure appears in ratio images involving the 1.59 and 2.03 ?m images north of the Huygens landing site. Although pure water ice cannot be the only component exposed at Titans surface, this area is consistent with a local enrichment in exposed water ice and seems to be consistent with DISR/Huygens images and spectra interpretations. The images show also a morphological structure that can be interpreted as a 150 km diameter impact crater with a central peak.



قيم البحث

اقرأ أيضاً

From 2004 to 2017, the Cassini spacecraft orbited Saturn, completing 127 close flybys of its largest moon, Titan. Cassinis Composite Infrared Spectrometer (CIRS), one of 12 instruments carried on board, profiled Titan in the thermal infrared (7-1000 microns) throughout the entire 13-year mission. CIRS observed on both targeted encounters (flybys) and more distant opportunities, collecting 8.4 million spectra from 837 individual Titan observations over 3633 hours. Observations of multiple types were made throughout the mission, building up a vast mosaic picture of Titans atmospheric state across spatial and temporal domains. This paper provides a guide to these observations, describing each type and chronicling its occurrences and global-seasonal coverage. The purpose is to provide a resource for future users of the CIRS data set, as well as those seeking to put existing CIRS publications into the overall context of the mission, and to facilitate future inter-comparison of CIRS results with those of other Cassini instruments, and ground-based observations.
We present Cassini VIMS observations of sun glitter -- wave-induced reflections from a liquid surface offset from a specular point -- on Kraken Mare. Sun glitter reveals rough sea surfaces around Kraken Mare, namely the coasts and narrow straits. The sun glitter observations indicate wave activity driven by the winds and tidal currents in Kraken Mare during northern summer. T104 Cassini VIMS observations show three sun glitter features in Bayta Fretum indicative of variegated wave fields. We cannot uniquely determine one source for the coastal Bayta waves, but we lean toward the interpretation of surface winds, because tidal currents should be too weak to generate capillary-gravity waves in Bayta Fretum. T105 and T110 observations reveal wave fields in the straits of Seldon Fretum, Lulworth Sinus, and Tunu Sinus that likely originate from the constriction of tidal currents. Coastlines of Bermoothes and Hufaidh Insulae adjoin rough sea surfaces, suggesting a complex interplay of wind-roughened seas and localized tidal currents. Bermoothes and Hufaidh Insulae may share characteristics of either the Torres Strait off Australia or the Aland region of Finland, summarized as an island-dense strait with shallow bathymetry that hosts complex surface circulation patterns. Hufaidh Insulae could host seafloor bedforms formed by tidal currents with an abundant sediment supply, similar to the Torres Strait. The coastlines of Hufaidh and Bermoothes Insulae likely host ria or flooded coastal inlets, suggesting the Insulae may be local peaks of primordial crust isolated by an episode of sea-level rise or tectonic uplift.
A new model for the shape of the prominent eccentric ringlet in the gap exterior to Saturns B-ring is developed based on Cassini imaging observations taken over about 8 years. Unlike previous treatments, the new model treats each edge of the ringlet separately. The Keplerian component of the model is consistent with results derived from Voyager observations, and $m=2$ modes forced by the nearby Mimas 2:1 Lindblad resonance are seen. Additionally, a free $m=2$ mode is seen on the outer edge of the ringlet. Significant irregular structure that cannot be described using normal-mode analysis is seen on the ringlet edges as well. Particularly on the inner edge, that structure remains coherent over multi-year intervals, moving at the local Keplerian rate. We interpret the irregular structure as the signature of embedded massive bodies. The long coherence time suggests the responsible bodies are concentrated near the edge of the ringlet. Long wake-like structures originate from two locations on the inner edge of the ringlet, revealing the locations of the two most massive embedded bodies in that region. As with the Voyager observations, the Cassini data sets showed no correlation between the width and the radius of the ringlet as would be expected for a self-gravitating configuration, except for a brief interval during late 2006, when the width-radius relation was similar to those seen in most other narrow eccentric ringlets in the Solar System.
The Cassini flyby of Jupiter in 2000 provided spatially resolved spectra of Jupiters atmosphere using the Visual and Infrared Mapping Spectrometer (VIMS). These spectra contain a strong absorption at wavelengths from about 2.9 $mu$m to 3.1 $mu$m, pre viously noticed in a 3-$mu$m spectrum obtained by the Infrared Space Observatory (ISO) in 1996. While Brooke et al. (1998, Icarus 136, 1-13) were able to fit the ISO spectrum very well using ammonia ice as the sole source of particulate absorption, Sromovsky and Fry (2010, Icarus 210, 211-229), using significantly revised NH$_3$ gas absorption models, showed that ammonium hydrosulfide (NH$_4$SH) provided a better fit to the ISO spectrum than NH$_3$ , but that the best fit was obtained when both NH$_3$ and NH$_4$SH were present. Although the large FOV of the ISO instrument precluded identification of the spatial distribution of these two components, the VIMS spectra at low and intermediate phase angles show that 3-$mu$m absorption is present in zones and belts, in every region investigated, and both low- and high-opacity samples are best fit with a combination of NH$_4$SH and NH$_3$ particles at all locations. The best fits are obtained with a layer of small ammonia-coated particles ($rsim0.3$ $mu$m) overlying but often close to an optically thicker but still modest layer of much larger NH$_4$SH particles ($rsim 10$ $mu$m), with a deeper optically thicker layer, which might also be composed of NH$_4$SH. Although these fits put NH$_3$ ice at pressures less than 500 mb, this is not inconsistent with the lack of prominent NH$_3$ features in Jupiters longwave spectrum because the reflectivity of the core particles strongly suppresses the NH$_3$ absorption features, at both near-IR and thermal wavelengths.
In this chapter we describe the remote sensing measurement of nitrogen-bearing species in Titans atmosphere by the Composite Infrared Spectrometer (CIRS) on the Cassini spacecraft. This instrument, which detects the thermal infrared spectrum from 10- 1500 cm-1 (1000-7 microns) is sensitive to vibrational emissions of gases and condensates in Titans stratosphere and lower mesosphere, permitting the measurement of ambient temperature and the abundances of gases and particulates. Three N-bearing species are firmly detected: HCN, HC3N and C2N2, and their vertical and latitudinal distributions have been mapped. In addition, ices of HC3N and possibly C4N2 are also seen in the far-infrared spectrum at high latitudes during the northern winter. The HC(15)N isotopologue has been measured, permitting the inference of the 14N/15N ratio in this species, which differs markedly (lower) than in the bulk nitrogen reservoir (N2). We also describe the search in the CIRS spectrum, and inferred upper limits, for NH3 and CH3CN. CIRS is now observing seasonal transition on Titan and the gas abundance distributions are changing accordingly, acting as tracers of the changing atmospheric circulation. The prospects for further CIRS science in the remaining five years of the Cassini mission are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا