ﻻ يوجد ملخص باللغة العربية
Electronic and transport properties of Graphene, a one-atom thick crystalline material, are sensitive to the presence of atoms adsorbed on its surface. An ensemble of randomly positioned adatoms, each serving as a scattering center, leads to the Bolzmann-Drude diffusion of charge determining the resistivity of the material. An important question, however, is whether the distribution of adatoms is always genuinely random. In this Article we demonstrate that a dilute adatoms on graphene may have a tendency towards a spatially correlated state with a hidden Kekule mosaic order. This effect emerges from the interaction between the adatoms mediated by the Friedel oscillations of the electron density in graphene. The onset of the ordered state, as the system is cooled below the critical temperature, is accompanied by the opening of a gap in the electronic spectrum of the material, dramatically changing its transport properties.
In frustrated quantum magnetism, chiral spin liquids are a particularly intriguing subset of quantum spin liquids in which the fractionalized parton degrees of freedom form a Chern insulator. Here we study an exactly solvable spin-3/2 model which har
Intrinsic ripples with various configurations and sizes were reported to affect the physical and chemical properties of 2D materials. By performing molecular dynamics simulations and theoretical analysis, we use two geometric models of the ripple sha
We have performed density functional theory calculations of graphene decorated with carbon adatoms, which bind at the bridge site of a C--C bond. Earlier studies have shown that the C adatoms have magnetic moments and have suggested the possibility o
Using density-functional theory, we calculate the electronic bandstructure of single-layer graphene on top of hexagonal In_2Te_2 monolayers. The geometric configuration with In and Te atoms at centers of carbon hexagons leads to a Kekule texture with
We present a theoretical study of surface states close to 3d transition metal adatoms (Cr, Mn, Fe, Co, Ni and Cu) on a Cu(111) surface in terms of an embedding technique using the fully relativistic Korringa-Kohn-Rostoker method. For each of the adat