ﻻ يوجد ملخص باللغة العربية
We present results of a sensitive Chandra X-ray observation and Spitzer mid-IR observations of the infrared cluster lying north of the NGC 2071 reflection nebula in the Orion B molecular cloud. We focus on the dense cluster core known as NGC 2071-IR which contains at least nine IR sources within a 40 x 40 arcsecond region. This region shows clear signs of active star formation including powerful molecular outflows, Herbig-Haro objects, and both OH and H2O masers. We use Spitzer IRAC images to aid in X-ray source identification and to determine YSO classes using mid-IR colors. Spitzer IRAC colors show that the luminous source IRS 1 is a class I protostar. IRS 1 is believed to be driving a powerful bipolar molecular outflow and may be an embedded B-type star or its progenitor. Its X-ray spectrum reveals a fluorescent Fe emission line at 6.4 keV, arising in cold material near the protostar. The line is present even in the absence of large flares, raising questions about the nature of the ionizing mechanism responsible for producing the 6.4 keV fluorescent line. Chandra also detects X-ray sources at or near the positions of IRS 2, IRS 3, IRS 4, and IRS 6 and a variable X-ray source coincident with the radio source VLA 1, located just 2 arcsec north of IRS 1. No IR data are yet available to determine a YSO classification for VLA 1, but its high X-ray absorption shows that it is even more deeply-embedded than IRS 1, suggesting that it could be an even younger, less-evolved protostar.
We present high resolution images of NGC 2071-IR in the $J$, $H$, and $K$ bands and in the emission at 2.12 $mu$m of the v=$1-0$ $S$(1) line of molecular hydrogen. We also present moderate resolution K-band spectra of two young stellar objects, IRS 1
The reflection nebula NGC 7129 has long been known to be a site of recent star formation as evidenced, e.g., by the presence of deeply embedded protostars and HH objects. However, studies of the stellar population produced in the star formation proce
Context: The physical origin behind organic emission in embedded low-mass star formation has been fiercely debated in the last two decades. A multitude of scenarios have been proposed, from a hot corino to PDRs on cavity walls to shock excitation.
We have conducted deep JHKs imaging polarimetry of a ~8 x 8 area of the NGC 2071 star forming region. Our polarization data have revealed various infrared reflection nebulae (IRNe) associated with the central IR young star cluster NGC2071IR and ident
We have performed mid-IR photometry of the young open cluster NGC 2264 using the images obtained with the Spitzer Space Telescope IRAC and MIPS instruments and present a normalized classification scheme of young stellar objects in various color-color