ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards a random laser with cold atoms

295   0   0.0 ( 0 )
 نشر من قبل William Guerin
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف William Guerin




اسأل ChatGPT حول البحث

Atoms can scatter light and they can also amplify it by stimulated emission. From this simple starting point, we examine the possibility of realizing a random laser in a cloud of laser-cooled atoms. The answer is not obvious as both processes (elastic scattering and stimulated emission) seem to exclude one another: pumping atoms to make them behave as amplifier reduces drastically their scattering cross-section. However, we show that even the simplest atom model allows the efficient combination of gain and scattering. Moreover, supplementary degrees of freedom that atoms offer allow the use of several gain mechanisms, depending on the pumping scheme. We thus first study these different gain mechanisms and show experimentally that they can induce (standard) lasing. We then present how the constraint of combining scattering and gain can be quantified, which leads to an evaluation of the random laser threshold. The results are promising and we draw some prospects for a practical realization of a random laser with cold atoms.



قيم البحث

اقرأ أيضاً

124 - William Guerin 2009
We address the problem of achieving a random laser with a cloud of cold atoms, in which gain and scattering are provided by the same atoms. In this system, the elastic scattering cross-section is related to the complex atomic polarizability. As a con sequence, the random laser threshold is expressed as a function of this polarizability, which can be fully determined by spectroscopic measurements. We apply this idea to experimentally evaluate the threshold of a random laser based on Raman gain between non-degenerate Zeeman states and find a critical optical thickness on the order of 200, which is within reach of state-of-the-art cold-atom experiments.
75 - G. Labeyrie 1999
Light propagating in an optically thick sample experiences multiple scattering. It is now known that interferences alter this propagation, leading to an enhanced backscattering, a manifestation of weak localization of light in such diffuse samples. T his phenomenon has been extensively studied with classical scatterers. In this letter we report the first experimental evidence for coherent backscattering of light in a laser-cooled gas of Rubidium atoms.
Using the transfer matrix method, we numerically compute the precise position of the mobility edge of atoms exposed to a laser speckle potential, and study its dependence vs. the disorder strength and correlation function. Our results deviate signifi cantly from previous theoretical estimates using an approximate self-consistent approach of localization. In particular we find that the position of the mobility edge in blue-detuned speckles is much lower than in the red-detuned counterpart, pointing out the crucial role played by the asymmetric on-site distribution of speckle patterns.
62 - S.E. Skipetrov 2018
We establish a localization phase diagram for light in a random three-dimensional (3D) ensemble of motionless two-level atoms with a three-fold degenerate upper level, in a strong static magnetic field. Localized modes appear in a narrow spectral ban d when the number density of atoms $rho$ exceeds a critical value $rho_c simeq 0.1 k_0^3$, where $k_0$ is the wave number of light in the free space. A critical exponent of the localization transition taking place upon varying the frequency of light at a constant $rho > rho_c$ is estimated to be $ u = 1.57 pm 0.07$. This classifies the transition as an Anderson localization transition of 3D orthogonal universality class.
We calculate the light-induced collisional loss of laser-cooled and trapped magnesium atoms for detunings up to 50 atomic linewidths to the red of the ^1S_0-^1P_1 cooling transition. We evaluate loss rate coefficients due to both radiative and nonrad iative state-changing mechanisms for temperatures at and below the Doppler cooling temperature. We solve the Schrodinger equation with a complex potential to represent spontaneous decay, but also give analytic models for various limits. Vibrational structure due to molecular photoassociation is present in the trap loss spectrum. Relatively broad structure due to absorption to the Mg_2 ^1Sigma_u state occurs for detunings larger than about 10 atomic linewidths. Much sharper structure, especially evident at low temperature, occurs even at smaller detunings due to of Mg_2 ^1Pi_g absorption, which is weakly allowed due to relativistic retardation corrections to the forbidden dipole transition strength. We also perform model studies for the other alkaline earth species Ca, Sr, and Ba and for Yb, and find similar qualitative behavior as for Mg.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا