ﻻ يوجد ملخص باللغة العربية
The aim of this paper is to give a precise estimate on the tail probability of the visibility function in a germ-grain model: this function is defined as the length of the longest ray starting at the origin that does not intersect an obstacle in a Boolean model. We proceed in two or more dimensions using coverage techniques. Moreover, convergence results involving a type I extreme value distribution are shown in the two particular cases of small obstacles or a large obstacle-free region.
At each point of a Poisson point process of intensity $lambda$ in the hyperbolic place, center a ball of bounded random radius. Consider the probability $P_r$ that from a fixed point, there is some direction in which one can reach distance $r$ withou
We consider the Bernoulli Boolean discrete percolation model on the d-dimensional integer lattice. We study sufficient conditions on the distribution of the radii of balls placed at the points of a Bernoulli point process for the absence of percolati
In a previous work, two of the authors proposed a new proof of a well known convergence result for the scaled elementary connected vacant component in the high intensity Boolean model towards the Crofton cell of the Poisson hyperplane process. In thi
In this paper we study the metastable behavior of one of the simplest disordered spin system, the random field Curie-Weiss model. We will show how the potential theoretic approach can be used to prove sharp estimates on capacities and metastable exit
In this work we study the Poisson Boolean model of percolation in locally compact Polish metric spaces and we prove the invariance of subcritical and supercritical phases under mm-quasi-isometries. In other words, we prove that if the Poisson Boolean