ﻻ يوجد ملخص باللغة العربية
We present models representing the scattering of quasar radiation off free electrons and dust grains in geometries that approximate the structure of quasar host galaxies. We show that, for reasonable assumptions, scattering alone can easily produce ratios of nuclear (point source) to extended fluxes comparable to those determined in studies of quasar hosts. This result suggests that scattered quasar light, as well as stellar emission from the host galaxy, contributes significantly to the detected extended flux, leading to uncertainty in the inferred properties of quasar host. A significant contribution from scattered quasar light will lead to overestimates of the luminosity and hence mass of the host galaxy, and may also distort its morphology. Scattering of quasar light within the host galaxy may provide alternative explanations for the apparent peak in host luminosity at z = 2-3; possibly the overall average higher luminosity of radio-loud host galaxies relative to those of radio-quiet quasars (RQQs), and the apparent preference of high-luminosity RQQs for spheroidal rather than disk galaxies.
Several analytic and numerical studies have indicated that the interstellar medium of a quasar host galaxy heated by feedback can contribute to a substantial secondary signal in the cosmic microwave background (CMB) through the thermal Sunyaev-Zeldov
We present near-infrared imaging obtained with ESO VLT/ISAAC of a sample of 16 low luminosity radio-quiet quasars at the epoch around the peak of the quasar activity (2 < z < 3), aimed at investigating their host galaxies. For 11 quasars, we are able
We perform a statistical analysis of strong gravitational lensing by quasar hosts of background galaxies, in the two competing models of dark matter halos of quasars, HOD and CS models. Utilizing the BolshoiP Simulation we demonstrate that strong gra
Gravitational lensing assists in the detection of quasar hosts by amplifying and distorting the host light away from the unresolved quasar core images. We present the results of HST observations of 30 quasar hosts at redshifts 1 < z < 4.5. The hosts
We present the on-going activity to characterize the geometrical properties of the gas and dark matter haloes using multi-wavelength observations of galaxy clusters. The role of the SZ signal in describing the gas distribution is discussed for the pi