ﻻ يوجد ملخص باللغة العربية
In modeling physical systems it is sometimes useful to construct border bases of 0-dimensional polynomial ideals which are contained in the ideal generated by a given set of polynomials. We define and construct such subideal border bases, provide some basic properties and generalize a suitable variant of the Buchberger-Moeller algorithm as well as the AVI-algorithm to the subideal setting. The subideal version of the AVI-algorithm is then applied to an actual industrial problem.
Here we study the problem of generalizing one of the main tools of Groebner basis theory, namely the flat deformation to the leading term ideal, to the border basis setting. After showing that the straightforward approach based on the deformation to
The main topic of the paper is the construction of various explicit flat families of border bases. To begin with, we cover the punctual Hilbert scheme Hilb^mu(A^n) by border basis schemes and work out the base changes. This enables us to control flat
Let $X$ be a set of points whose coordinates are known with limited accuracy; our aim is to give a characterization of the vanishing ideal $I(X)$ independent of the data uncertainty. We present a method to compute a polynomial basis $B$ of $I(X)$ whi
In this paper we consider the problem of computing all possible order ideals and also sets connected to 1, and the corresponding border bases, for the vanishing ideal of a given finite set of points. In this context two different approaches are discu
Given a finite order ideal $mathcal O$ in the polynomial ring $K[x_1,dots, x_n]$ over a field $K$, let $partial mathcal O$ be the border of $mathcal O$ and $mathcal P_{mathcal O}$ the Pommaret basis of the ideal generated by the terms outside $mathca