ﻻ يوجد ملخص باللغة العربية
We present new observational results that conclude that the nearby radio galaxy B2 0722+30 is one of the very few known disc galaxies in the low-redshift Universe that host a classical double-lobed radio source. In this paper we use HI observations, deep optical imaging, stellar population synthesis modelling and emission-line diagnostics to study the host galaxy, classify the Active Galactic Nucleus and investigate environmental properties under which a radio-loud AGN can occur in this system. Typical for spiral galaxies, B2 0722+30 has a regularly rotating gaseous disc throughout which star formation occurs. Dust heating by the ongoing star formation is likely responsible for the high infrared luminosity of the system. The optical emission-line properties of the central region identify a Low Ionization Nuclear Emission-line Region (LINER)-type nucleus with a relatively low [OIII] luminosity, in particular when compared with the total power of the Fanaroff & Riley type-I radio source that is present in this system. This classifies B2 0722+30 as a classical radio galaxy rather than a typical Seyfert galaxy. The environment of B2 0722+30 is extremely HI-rich, with several nearby interacting galaxies. We argue that a gas-rich interaction involving B2 0722+30 is a likely cause for the triggering of the radio-AGN and/or the fact that the radio source managed to escape the optical boundaries of the host galaxy.
There is compelling evidence showing that extragalactic jets are a crucial ingredient in the evolution of host galaxies and their environments. Extragalactic jets are well collimated and relativistic, both in terms of thermodynamics and kinematics at
Radio loud Active Galactic Nuclei are episodic in nature, cycling through periods of activity and quiescence. In this work we investigate the duty cycle of the radio galaxy B2~0258+35, which was previously suggested to be a restarted radio galaxy bas
In recent years, millisecond duration radio signals originating from distant galaxies appear to have been discovered in the so-called Fast Radio Bursts. These signals are dispersed according to a precise physical law and this dispersion is a key obse
We consider the problem of determining the host galaxies of radio sources by cross-identification. This has traditionally been done manually, which will be intractable for wide-area radio surveys like the Evolutionary Map of the Universe (EMU). Autom
We present preliminary results from a multi-wavelength study of a merger candidate, NGC3801, hosting a young FR I radio galaxy, with a Z-shaped structure. Analysing archival data from the VLA, we find two HI emission blobs on either side of the host