ترغب بنشر مسار تعليمي؟ اضغط هنا

Building a control sample for galaxy pairs

214   0   0.0 ( 0 )
 نشر من قبل Josefa Perez
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Josefa Perez




اسأل ChatGPT حول البحث

Several observational works have attempted to isolate the effects of galaxy interactions by comparing galaxies in pairs with isolated galaxies. However, different authors have proposed different ways to build these so-called control samples (CS). By using mock galaxy catalogues of the SDSS-DR4 built up from the Millennium Simulation, we explore how the way of building a CS might introduce biases which could affect the interpretation of results. We make use of the fact that the physics of interactions is not included in the semianalytic model, to infer that any difference between the mock control and pair samples can be ascribed to selection biases. Thus, we find that galaxies in pairs artificially tend to be older and more bulge-dominated, and to have less cold gas and different metallicities than their isolated counterparts. Also because of a biased selection, galaxies in pairs tend to live in higher density environments, and in haloes of larger masses. We find that imposing constraints on redshift, stellar masses and local densities diminishes the selection biases by ~70%. Based on these findings, we suggest observers how to build an unique and unbiased CS in order to reveal the effect of galaxy interactions.



قيم البحث

اقرأ أيضاً

Non-thermal properties of galaxy clusters have been studied with detailed and deep radio images in comparison with X-ray data. While much progress has been made, most of the studied clusters are at a relatively low redshift (z < 0.3). We here investi gate the evolutionary properties of the non-thermal cluster emission using two statistically complete samples at z > 0.3. We obtained short JVLA observations at L-band of the statistically complete sample of very X-ray luminous clusters from the Massive Cluster Survey (MACS) presented by Ebeling et al. (2010), and redshift range 0.3 - 0.5. We add to this list the complete sample of the 12 most distant MACS clusters (z > 0.5) presented in Ebeling et al. (2007). Most clusters show evidence of emission in the radio regime. We present the radio properties of all clusters in our sample and show images of newly detected diffuse sources. A radio halo is detected in 19 clusters, and five clusters contain a relic source. Most of the brightest cluster galaxies (BCG) in relaxed clusters show radio emission with powers typical of FRII radio galaxies, and some are surrounded by a radio mini-halo. The high frequency of radio emission from the BCG in relaxed clusters suggests that BCG feedback mechanisms are in place already at z about 0.6. The properties of radio halos and the small number of detected relics suggest redshift evolution in the properties of diffuse sources. The radio power (and size) of radio halos could be related to the number of past merger events in the history of the system. In this scenario, the presence of a giant and high-power radio halo is indicative of an evolved system with a large number of past major mergers.
Analysis of galaxies with overlapping images offers a direct way to probe the distribution of dust extinction and its effects on the background light. We present a catalog of 1990 such galaxy pairs selected from the Sloan Digital Sky Survey (SDSS) by volunteers of the Galaxy Zoo project. We highlight subsamples which are particularly useful for retrieving such properties of the dust distribution as UV extinction, the extent perpendicular to the disk plane, and extinction in the inner parts of disks. The sample spans wide ranges of morphology and surface brightness, opening up the possibility of using this technique to address systematic changes in dust extinction or distribution with galaxy type. This sample will form the basis for forthcoming work on the ranges of dust distributions in local disk galaxies, both for their astrophysical implications and as the low-redshift part of a study of the evolution of dust properties. Separate lists and figures show deep overlaps, where the inner regions of the foreground galaxy are backlit, and the relatively small number of previously-known overlapping pairs outside the SDSS DR7 sky coverage.
We present Giant Metrewave Radio Telescope 610 MHz observations of 14 Atacama Cosmology Telescope (ACT) clusters, including new data for nine. The sample includes 73% of ACT equatorial clusters with $M_{500} > 5 times 10^{14};M_odot$. We detect diffu se emission in three of these (27$^{+20}_{-14}$%): we detect a radio mini-halo in ACT-CL J0022.2$-$0036 at $z=0.8$, making it the highest-redshift mini-halo known; we detect potential radio relic emission in ACT-CL J0014.9$-$0057 ($z=0.533$); and we confirm the presence of a radio halo in low-mass cluster ACT-CL J0256.5+0006, with flux density $S_{610} = 6.3;pm;0.4$ mJy. We also detect residual diffuse emission in ACT-CL J0045.9$-$0152 ($z=0.545$), which we cannot conclusively classify. For systems lacking diffuse radio emission, we determine radio halo upper limits in two ways and find via survival analysis that these limits do not significantly affect radio power scaling relations. Several clusters with no diffuse emission detection are known or suspected mergers, based on archival X-ray and/or optical measures; given the limited sensitivity of our observations, deeper observations of these disturbed systems are required in order to rule out the presence of diffuse emission consistent with known scaling relations. In parallel with our diffuse emission results, we present catalogs of individual radio sources, including a few interesting extended sources. Our study represents the first step towards probing the occurrence of diffuse emission in high-redshift ($zgtrsim0.5$) clusters, and serves as a pilot for statistical studies of larger cluster samples with the new radio telescopes available in the pre-SKA era.
Some indications for tension have long been identified between cosmological constraints obtained from galaxy clusters and primary CMB measurements. Typically, assuming the matter density and fluctuations, as parameterized with Omega_m and sigma_8, es timated from CMB measurements, many more clusters are expected than those actually observed. One possible explanation could be that certain types of galaxy groups or clusters were missed in samples constructed in previous surveys, resulting in a higher incompleteness than estimated. We aim to determine if a hypothetical class of very extended, low surface brightness, galaxy groups or clusters have been missed in previous X-ray cluster surveys based on the ROSAT All-Sky Survey (RASS). We applied a dedicated source detection algorithm sensitive also to more unusual group or cluster surface brightness distributions. We found many known but also a number of new group candidates, which are not included in any previous X-ray / SZ cluster catalogs. In this paper, we present a pilot sample of 13 very extended groups discovered in the RASS at positions where no X-ray source has been detected previously and with clear optical counterparts. The X-ray fluxes of at least 5 of these are above the nominal flux-limits of previous RASS cluster catalogs. They have low mass ($10^{13} - 10^{14} M_{odot}$; i.e., galaxy groups), are at low redshift (z<0.08), and exhibit flatter surface brightness distributions than usual. We demonstrate that galaxy groups were missed in previous RASS surveys, possibly due to the flat surface brightness distributions of this potential new population. Analysis of the full sample will show if this might have a significant effect on previous cosmological parameter constraints based on RASS cluster surveys. (This is a shortened version of the abstract - full text in the article)
110 - S. Pandey , E. Krause , J. DeRose 2021
We constrain cosmological parameters and galaxy-bias parameters using the combination of galaxy clustering and galaxy-galaxy lensing measurements from the Dark Energy Survey Year-3 data. We describe our modeling framework and choice of scales analyze d, validating their robustness to theoretical uncertainties in small-scale clustering by analyzing simulated data. Using a linear galaxy bias model and redMaGiC galaxy sample, we obtain constraints on the matter content of the universe to be $Omega_{rm m} = 0.325^{+0.033}_{-0.034}$. We also implement a non-linear galaxy bias model to probe smaller scales that includes parameterizations based on hybrid perturbation theory, and find that it leads to a 17% gain in cosmological constraining power. Using the redMaGiC galaxy sample as foreground lens galaxies, we find the galaxy clustering and galaxy-galaxy lensing measurements to exhibit significant signals akin to decorrelation between galaxies and mass on large scales, which is not expected in any current models. This likely systematic measurement error biases our constraints on galaxy bias and the $S_8$ parameter. We find that a scale-, redshift- and sky-area-independent phenomenological decorrelation parameter can effectively capture this inconsistency between the galaxy clustering and galaxy-galaxy lensing. We perform robustness tests of our methodology pipeline and demonstrate stability of the constraints to changes in the theory model. After accounting for this decorrelation, we infer the constraints on the mean host halo mass of the redMaGiC galaxies from the large-scale bias constraints, finding the galaxies occupy halos of mass approximately $1.5 times 10^{13} M_{odot}/h$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا