ترغب بنشر مسار تعليمي؟ اضغط هنا

SPITZER/IRAC-MIPS Survey of NGC2451A and B: Debris Disks at 50-80 million years

129   0   0.0 ( 0 )
 نشر من قبل Zoltan Balog
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a Spitzer IRAC and MIPS survey of NGC 2451 A and B, two open clusters in the 50-80 Myr age range. We complement these data with extensive ground-based photometry and spectroscopy to identify the cluster members in the Spitzer survey field. We find only two members with 8 micron excesses. The incidence of excesses at 24 microns is much higher, 11 of 31 solar-like stars and 1 of 7 early-type (A) stars. This work nearly completes the debris disk surveys with Spitzer of clusters in the 30-130 Myr range. This range is of inte rest because it is when large planetesimal collisions may have still been relatively common (as indicated by the one that led to the formation of the Moon during this period of the evolution of the Solar System). We review the full set of surveys and find that there are only three possible cases out of about 250 roughly solar-mass stars where very large excesses suggest that such collisions have occurred recently.



قيم البحث

اقرأ أيضاً

We present Goulds Belt (GB) Spitzer IRAC and MIPS observations of the Lupus V and VI clouds and discuss them in combination with near-infrared (2MASS) data. Our observations complement those obtained for other Lupus clouds within the frame of the Spi tzer Core to Disk (c2d) Legacy Survey. We found 43 Young Stellar Object (YSO) candidates in Lupus V and 45 in Lupus VI, including 2 transition disks, using the standard c2d/GB selection method. None of these sources was classified as a pre-main sequence star from previous optical, near-IR and X-ray surveys. A large majority of these YSO candidates appear to be surrounded by thin disks (Class III; ~79% in Lupus V and ~87% in Lupus VI). These Class III abundances differ significantly from those observed for the other Lupus clouds and c2d/GB surveyed star-forming regions, where objects with optically thick disks (Class II) dominate the young population. We investigate various scenarios that can explain this discrepancy. In particular, we show that disk photo-evaporation due to nearby OB stars is not responsible for the high fraction of Class III objects. The gas surface densities measured for Lupus V and VI lies below the star-formation threshold (AV {eqsim}8.6 mag), while this is not the case for other Lupus clouds. Thus, few Myrs older age for the YSOs in Lupus V and VI with respect to other Lupus clouds is the most likely explanation of the high fraction of Class III objects in these clouds, while a higher characteristic stellar mass might be a contributing factor. Better constraints on the age and binary fraction of
The Spitzer Space Telescope mapped the Perseus molecular cloud complex with IRAC and MIPS as part of the c2d Spitzer Legacy project. This paper combines the observations from both instruments giving an overview of low-mass star formation across Perse us from 3.6 to 70 micron. We provide an updated list of young stellar objects with new classifications and source fluxes from previous works, identifying 369 YSOs in Perseus with the Spitzer dataset. By synthesizing the IRAC and MIPS maps of Perseus and building on the work of previous papers in this series (Jorgensen et al. 2006, Rebull et al. 2007), we present a current census of star formation across the cloud and within smaller regions. 67% of the YSOs are associated with the young clusters NGC 1333 and IC 348. The majority of the star formation activity in Perseus occurs in the regions around the clusters, to the eastern and western ends of the cloud complex. The middle of the cloud is nearly empty of YSOs despite containing regions of high visual extinction. The western half of Perseus contains three-quarters of the total number of embedded YSOs (Class 0+I and Flat SED sources) in the cloud and nearly as many embedded YSOs as Class II and III sources. Class II and III greatly outnumber Class 0+I objects in eastern Perseus and IC 348. These results are consistent with previous age estimates for the clusters. Across the cloud, 56% of YSOs and 91% of the Class 0+I and Flat sources are in areas where Av > 5 mag, indicating a possible extinction threshold for star formation.
Aims: We aim at measuring mass-loss rates and the luminosities of a statistically large sample of Galactic bulge stars at several galactocentric radii. The sensitivity of previous infrared surveys of the bulge has been rather limited, thus fundamenta l questions for late stellar evolution, such as the stage at which substantial mass-loss begins on the red giant branch and its dependence on fundamental stellar properties, remain unanswered. We aim at providing evidence and answers to these questions. Methods: To this end, we observed seven 15 times 15 arcmin^2 fields in the nuclear bulge and its vicinity with unprecedented sensitivity using the IRAC and MIPS imaging instruments on-board the Spitzer Space Telescope. In each of the fields, tens of thousands of point sources were detected. Results: In the first paper based on this data set, we present the observations, data reduction, the final catalogue of sources, and a detailed comparison to previous mid-IR surveys of the Galactic bulge, as well as to theoretical isochrones. We find in general good agreement with other surveys and the isochrones, supporting the high quality of our catalogue.
We present Spitzer IRAC (2.1 sq. deg.) and MIPS (6.5 sq. deg.) observations of star formation in the Ophiuchus North molecular clouds. This fragmentary cloud complex lies on the edge of the Sco-Cen OB association, several degrees to the north of the well-known rho Oph star-forming region, at an approximate distance of 130 pc. The Ophiuchus North clouds were mapped as part of the Spitzer Gould Belt project under the working name `Scorpius. In the regions mapped, selected to encompass all the cloud with visual extinction AV>3, eleven Young Stellar Object (YSO) candidates are identified, eight from IRAC/MIPS colour-based selection and three from 2MASS K/MIPS colours. Adding to one source previously identified in L43 (Chen et al. 2009), this increases the number of YSOcs identified in Oph N to twelve. During the selection process, four colour-based YSO candidates were rejected as probable AGB stars and one as a known galaxy. The sources span the full range of YSOc classifications from Class 0/1 to Class III, and starless cores are also present. Twelve high-extinction (AV>10) cores are identified with a total mass of approx. 100 solar masses. These results confirm that there is little ongoing star formation in this region (instantaneous star formation efficiency <0.34%) and that the bottleneck lies in the formation of dense cores. The influence of the nearby Upper Sco OB association, including the 09V star zeta Oph, is seen in dynamical interactions and raised dust temperatures but has not enhanced levels of star formation in Ophiuchus North.
We present the results from a survey of NGC 2244 from 3.6 to 24 micron with the Spitzer Space Telescope. The 24micron-8micron-3.6micron color composite image of the region shows that the central cavity surrounding the multiple O and B stars of NGC224 4 contains a large amount of cool dust visible only at 24micron. Our survey gives a detailed look at disk survivability within the hot-star-dominated environment in this cavity. Using mid infrared two color diagrams ([3.6]-[4.5] vs [5.8]-[8.0]) we identified 337 class II and 25 class I objects out of 1084 objects detected in all four of these bands with photometric uncertainty better than 10%. Including the 24 micron data, we found 213 class II and 20 class I sources out of 279 stars detected also at this latter band. The center of the class II density contours is in very good agreement with the center of the cluster detected in the 2MASS images. We studied the distribution of the class II sources relative to the O stars and found that the effect of high mass stars on the circumstellar disks is significant only in their immediate vicinity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا