ﻻ يوجد ملخص باللغة العربية
Purpose: To determine whether alternative HDR prostate brachytherapy catheter patterns can result in improved dose distributions while providing better access and reducing trauma. Methods: Prostate HDR brachytherapy uses a grid of parallel needle positions to guide the catheter insertion. This geometry does not easily allow the physician to avoid piercing the critical structures near the penile bulb nor does it provide position flexibility in the case of pubic arch interference. On CT data from ten previously-treated patients new catheters were digitized following three catheter patterns: conical, bi-conical, and fireworks. The conical patterns were used to accommodate a robotic delivery using a single entry point. The bi-conical and fireworks patterns were specifically designed to avoid the critical structures near the penile bulb. For each catheter distribution, a plan was optimized with the inverse planning algorithm, IPSA, and compared with the plan used for treatment. Irrelevant of catheter geometry, a plan must fulfill the RTOG-0321 dose criteria for target dose coverage. Results: Thirty plans from ten patients were optimized. All non-standard patterns fulfilled the RTOG criteria when the clinical plan did. In some cases, the dose distribution was improved by better sparing the organs-at-risk. Conclusion: Alternative catheter patterns can provide the physician with additional ways to treat patients previously considered unsuited for brachytherapy treatment (pubic arch interference) and facilitate robotic guidance of catheter insertion. In addition, alternative catheter patterns may decrease toxicity by avoidance of the critical structures near the penile bulb while still fulfilling the RTOG criteria.
Purpose: Many planning methods for high dose rate (HDR) brachytherapy treatment planning require an iterative approach. A set of computational parameters are hypothesized that will give a dose plan that meets dosimetric criteria. A dose plan is compu
High dose-rate brachytherapy (HDRBT) is widely used for gynecological cancer treatment. Although commercial treatment planning systems (TPSs) have inverse optimization modules, it takes several iterations to adjust planning objectives to achieve a sa
Purpose: This study aims to optimize and characterize the response of a mPSD for in vivo dosimetry in HDR brachytherapy. Methods: An exhaustive analysis was carried out in order to obtain an optimized mPSD design that maximize the scintillation light
Inverse treatment planning in radiation therapy is formulated as optimization problems. The objective function and constraints consist of multiple terms designed for different clinical and practical considerations. Weighting factors of these terms ar
Purpose: We sought to evaluate the feasibility of using machine learning algorithms for multipoint plastic scintillator detector calibration in high-dose-rate brachytherapy. Methods: The dosimetry system consisted of an optimized 1-mm-core mPSD and a