ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical supersymmetry breaking from unoriented D-brane instantons

159   0   0.0 ( 0 )
 نشر من قبل Francesco Fucito
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the non-perturbative dynamics of an unoriented Z_5-quiver theory of GUT kind with gauge group U(5) and chiral matter. At strong coupling the non-perturbative dynamics is described in terms of set of baryon/meson variables satisfying a quantum deformed constraint. We compute the effective superpotential of the theory and show that it admits a line of supersymmetric vacua and a phase where supersymmetry is dynamically broken via gaugino condensation.



قيم البحث

اقرأ أيضاً

In this paper we study dynamical supersymmetry breaking in absence of gravity with the matter content of the minimal supersymmetric standard model. The hidden sector of the theory is a strongly coupled gauge theory, realized in terms of microscopic v ariables which condensate to form mesons. The supersymmetry breaking scalar potential combines F, D terms with instanton generated interactions in the Higgs-mesons sector. We show that for a large region in parameter space the vacuum breaks in addition to supersymmetry also electroweak gauge symmetry. We furthermore present local D-brane configurations that realize these supersymmetry breaking patterns.
We revisit the issue of gravitational contributions to soft masses in five-dimensional sequestered models. We point out that, unlike for the case of F-type supersymmetry breaking, for D-type breaking these effects generically give positive soft masse s squared for the sfermions. This drastically improves model building. We discuss the phenomenological implications of our result.
We point out that in some situations it is possible to use matrix model techniques a la Dijkgraaf-Vafa to perturbatively compute D-brane instanton effects. This provides an explanation in terms of stringy instantons of the results in hep-th/0311181. We check this proposal in some simple scenarios. We point out some interesting consequences of this observation, such as the fact that it gives a perturbative way of computing stringy multi-instanton effects. It also provides a further interpretation of D-brane instantons as residual instantons of higgsed supergroups.
63 - J. Mourad , A. Sagnotti 2017
Brane supersymmetry breaking is a peculiar phenomenon that can occur in perturbative orientifold vacua. It results from the simultaneous presence, in the vacuum, of non-mutually BPS sets of BPS branes and orientifolds, which leave behind a net tensio n and thus a runaway potential, but no tachyons. In the simplest ten-dimensional realization, the low-lying modes combine the closed sector of type-I supergravity with an open sector including USp(32) gauge bosons, fermions in the antisymmetric 495 and an additional singlet playing the role of a goldstino. We review some properties of this system and of other non-tachyonic models in ten dimensions with broken supersymmetry, and we illustrate some puzzles that their very existence raises, together with some applications that they have stimulated.
99 - Martin OLoughlin 1996
In the vicinity of points in Calabi-Yau moduli space where there are degenerating three-cycles the low energy effective action of type IIA string theory will contain significant contributions arising from membrane instantons that wrap around these th ree-cycles. We show that the world-volume description of these instantons is Chern-Simons theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا