ترغب بنشر مسار تعليمي؟ اضغط هنا

Low energy measurements with Helium Micromegas micro-TPC

192   0   0.0 ( 0 )
 نشر من قبل Frederic Mayet
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف O. Guillaudin




اسأل ChatGPT حول البحث

The measurement of the ionization produced by particles in a medium presents a great interest in several fields from metrology to particule physics and cosmology. The ionization quenching factor is defined as the fraction of energy released by ionisation by a recoil in a medium compared with its kinetic energy. At low energy, in the range of a few keV, the ionization falls rapidly and systematic measurement are needed. We have developped an experimental setup devoted to the measurement of low energy (keV) ionization quenching factor for the MIMAC project. The ionization produced in the gas has been measured with a Micromegas detector filled with Helium gas mixture.



قيم البحث

اقرأ أيضاً

135 - F. Mayet 2009
The MIMAC project is a multi-chamber detector for Dark Matter search, aiming at measuring both track and ionization with a matrix of micromegas micro-TPC filled with He3 and CF4. Recent experimental results on the first measurements of the Helium que nching factor at low energy (1 keV recoil) are presented, together with the first simulation of the track reconstruction. Recontruction of track of alpha from Radon impurities is shown as a first proof of concept.
Micro-TPC, a time projection chamber(TPC) with micro pixel chamber($mu$-PIC) readout was developed for the detection of the three-dimensional fine(sub-m illimeter) tracks of charged particles. We developed a two-dimensional position sensitive gaseous detector, or the $mu$-PIC, with the detection area of 10$times$10 cm${}^{2}$ and 65536 anode electrodes of 400 $mu$m pitch. We achieved the gas gain of over 10000 without any other multipliers. With the pipe-line readout system specially developed for the $mu$-PIC, we detected X-rays at the rate as high as 7.7 Mcps. We attached a drift cage with an 8 cm drift length to the $mu$-PIC and developed a micro-TPC. We measured the basic performances of the micro-TPC and took three-dimensional tracks of electrons. We also developed a prototype of the MeV gamma-ray imaging detector which is a hybrid of the micro-TPC and NaI(Tl) scintillators and confirmed its concept by reconstructing the obtained data.
NEXT-MM is a general-purpose high pressure (10 bar, $sim25$ l active volume) Xenon-based TPC, read out in charge mode with an 8 cm $times$8 cm-segmented 700 cm$^2$ plane (1152 ch) of the latest microbulk-Micromegas technology. It has been recently co mmissioned at University of Zaragoza as part of the R&D of the NEXT $0 ubetabeta$ experiment, although the experiments first stage is currently being built based on a SiPM/PMT-readout concept relying on electroluminescence. Around 2 million events were collected during the last months, stemming from the low energy $gamma$-rays emitted by a $^{241}$Am source when interacting with the Xenon gas ($epsilon$ = 26, 30, 59.5 keV). The localized nature of such events above atmospheric pressure, the long drift times, as well as the possibility to determine their production time from the associated $alpha$ particle in coincidence, allow the extraction of primordial properties of the TPC filling gas, namely the drift velocity, diffusion and attachment coefficients. In this work we focus on the little explored combination of Xe and trimethylamine (TMA) for which, in particular, such properties are largely unknown. This gas mixture offers potential advantages over pure Xenon when aimed at Rare Event Searches, mainly due to its Penning characteristics, wave-length shifting properties and reduced diffusion, and it is being actively investigated by our collaboration. The chamber is currently operated at 2.7 bar, as an intermediate step towards the envisaged 10 bar. We report here its performance as well as a first implementation of the calibration procedures that have allowed the extension of the previously reported energy resolution to the whole readout plane (10.6%FWHM@30keV).
182 - F.J. Iguaz , J.G. Garza , F. Aznar 2015
Dark Matter experiments are recently focusing their detection techniques in low-mass WIMPs, which requires the use of light elements and low energy threshold. In this context, we present the TREX-DM experiment, a low background Micromegas-based TPC f or low-mass WIMP detection. Its main goal is the operation of an active detection mass $sim$0.300 kg, with an energy threshold below 0.4 keVee and fully built with previously selected radiopure materials. This article describes the actual setup, the first results of the comissioning in Ar+2%iC$_4$H$_{10}$ at 1.2 bar and the future updates for a possible physics run at the Canfranc Underground Laboratory in 2016. A first background model is also presented, based on Geant4 simulations and a muon/electron discrimination method. In a conservative scenario, TREX-DM could be sensitive to DAMA/LIBRA and other hints of positive WIMPs signals, with some space for improvement with a neutron/electron discrimination method or the use of other light gases.
121 - F.J. Iguaz , J.G. Garza , F. Aznar 2016
Dark Matter experiments are recently focusing their detection techniques in low-mass WIMPs, which requires the use of light elements and low energy threshold. In this context, we describe the TREX-DM experiment, a low background Micromegas-based TPC for low-mass WIMP detection. Its main goal is the operation of an active detection mass $sim$0.3 kg, with an energy threshold below 0.4 keVee and fully built with previously selected radiopure materials. This work describes the commissioning of the actual setup situated in a laboratory on surface and the updates needed for a possible physics run at the Canfranc Underground Laboratory (LSC) in 2016. A preliminary background model of TREX-DM is also presented, based on a Geant4 simulation, the simulation of the detectors response and two discrimination methods: a conservative muon/electron and one based on a neutron source. Based on this background model, TREX-DM could be competitive in the search for low-mass WIMPs. In particular it could be sensitive, e.g., to the low-mass WIMP interpretation of the DAMA/LIBRA and other hints in a conservative scenario.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا