We study numerically a model of nonequilibrium networks where nodes and links are added at each time step with aging of nodes and connectivity- and age-dependent attachment of links. By varying the effects of age in the attachment probability we find, with numerical simulations and scaling arguments, that a giant cluster emerges at a first-order critical point and that the problem is in the universality class of one dimensional percolation. This transition is followed by a change in the giant clusters topology from tree-like to quasi-linear, as inferred from measurements of the average shortest-path length, which scales logarithmically with system size in one phase and linearly in the other.