ترغب بنشر مسار تعليمي؟ اضغط هنا

Detecting circumstellar disks around gravitational microlenses

301   0   0.0 ( 0 )
 نشر من قبل Markus Hundertmark
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the chance of detecting proto-planetary or debris disks in stars that induce microlensing events (lenses). The modification of the light curves shapes due to occultation and extinction by the disks as well as the additional gravitational deflection caused by the additional mass is considered. The magnification of gravitational microlensing events is calculated using the ray shooting method. The occultation is taken into account by neglecting or weighting the images on the lens plane according to a transmission map of the corresponding disk for a point source point lens (PSPL) model. The estimated frequency of events is obtained by taking the possible inclinations and optical depths of the disk into account. We conclude that gravitational microlensing can be used, in principle, as a tool for detecting debris disks beyond 1 kpc, but estimate that each year of the order of 1 debris disk is expected for lens stars of F, G, or K spectral type and of the order of 10 debris disks might have shown signatures in existing datasets.



قيم البحث

اقرأ أيضاً

[Abridged] Star and planet formation are the complex outcomes of gravitational collapse and angular momentum transport mediated by protostellar and protoplanetary disks. In this review we focus on the role of gravitational instability in this process . We begin with a brief overview of the observational evidence for massive disks that might be subject to gravitational instability, and then highlight the diverse ways in which the instability manifests itself in protostellar and protoplanetary disks: the generation of spiral arms, small scale turbulence-like density fluctuations, and fragmentation of the disk itself. We present the analytic theory that describes the linear growth phase of the instability, supplemented with a survey of numerical simulations that aim to capture the non-linear evolution. We emphasize the role of thermodynamics and large scale infall in controlling the outcome of the instability. Despite apparent controversies in the literature, we show a remarkable level of agreement between analytic predictions and numerical results. We highlight open questions related to (1) the development of a turbulent cascade in thin disks, and (2) the role of mode-mode coupling in setting the maximum angular momentum transport rate in thick disks.
We have conducted a survey of 17 wide (> 100 AU) young binary systems in Taurus with the Atacama Large Millimeter Array (ALMA) at two wavelengths. The observations were designed to measure the masses of circumstellar disks in these systems as an aid to understanding the role of multiplicity in star and planet formation. The ALMA observations had sufficient resolution to localize emission within the binary system. Disk emission was detected around all primaries and ten secondaries, with disk masses as low as $10^{-4} M_{odot}$. We compare the properties of our sample to the population of known disks in Taurus and find that the disks from this binary sample match the scaling between stellar mass and millimeter flux of $F_{mm} propto M_{ast}^{1.5-2.0}$ to within the scatter found in previous studies. We also compare the properties of the primaries to those of the secondaries and find that the secondary/primary stellar and disk mass ratios are not correlated; in three systems, the circumsecondary disk is more massive than the circumprimary disk, counter to some theoretical predictions.
A disk around one component of a binary star system with sufficiently high inclination can undergo Kozai-Lidov (KL) oscillations during which the disk inclination and disk eccentricity are exchanged. Previous studies show that without a source of acc retion, KL unstable disks exhibit damped oscillations, due to viscous dissipation, that leave the disk stable near or below the critical inclination for KL oscillations. With three-dimensional hydrodynamical simulations we show that a highly misaligned circumbinary disk that flows onto the binary components forms highly inclined circumstellar disks around each component. We show that a continuous infall of highly inclined material allows the KL oscillations to continue. The KL disk oscillations produce shocks and eccentricity growth in the circumstellar disks that affect the conditions for planet formation.
Aims. Our goal is to determine the molecular composition of the circumstellar disk around AB Aurigae (hereafter, AB Aur). AB Aur is a prototypical Herbig Ae star and the understanding of its disk chemistry is of paramount importance to understand the chemical evolution of the gas in warm disks. Methods. We used the IRAM 30-m telescope to perform a sensitive search for molecular lines in AB Aur as part of the IRAM Large program ASAI (A Chemical Survey of Sun-like Star-forming Regions). These data were complemented with interferometric observations of the HCO+ 1-0 and C17O 1-0 lines using the IRAM Plateau de Bure Interferometer (PdBI). Single-dish and interferometric data were used to constrain chemical models. Results. Throughout the survey, several lines of CO and its isotopologues, HCO+, H2CO, HCN, CN and CS, were detected. In addition, we detected the SO 54-33 and 56-45 lines, confirming the previous tentative detection. Comparing to other T Tauris and Herbig Ae disks, AB Aur presents low HCN 3-2/HCO+ 3-2 and CN 2-1/HCN 3-2 line intensity ratios, similar to other transition disks. AB Aur is the only protoplanetary disk detected in SO thus far. Conclusions. We modeled the line profiles using a chemical model and a radiative transfer 3D code. Our model assumes a flared disk in hydrostatic equilibrium. The best agreement with observations was obtained for a disk with a mass of 0.01 Msun , Rin=110 AU, Rout=550 AU, a surface density radial index of 1.5 and an inclination of 27 deg. The intensities and line profiles were reproduced within a factor of 2 for most lines. This agreement is reasonable taking into account the simplicity of our model that neglects any structure within the disk. However, the HCN 3-2 and CN 2-1 line intensities were predicted more intense by a factor of >10. We discuss several scenarios to explain this discrepancy.
The new NIKA2 camera at the IRAM 30m radiotelescope was used to observe three known debris disks in order to constrain the SED of their dust emission in the millimeter wavelength domain. We have found that the spectral index between the two NIKA2 ban ds (1mm and 2mm) is consistent with the Rayleigh-Jeans regime (lambda^{-2}), unlike the steeper spectra (lambda^{-3}) measured in the submillimeter-wavelength domain for two of the three disks $-$ around the stars Vega and HD107146. We provide a succesful proof of concept to model this spectral inversion in using two populations of dust grains, those smaller and those larger than a grain radius a0 of 0.5mm. This is obtained in breaking the slope of the size distribution and the functional form of the absorption coefficient of the standard model at a0. The third disk - around the star HR8799 - does not exhibit this spectral inversion but is also the youngest.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا