ﻻ يوجد ملخص باللغة العربية
We use the QCD sum rules to evaluate the mass of a possible scalar mesonic state that couples to a molecular $D_{s}^{*}bar{D}_s^{*}$ current. We find a mass $m_{D_s^*D_s^*}=(4.14pm 0.09)$ GeV, which is in a excellent agreement with the recently observed Y(4140) charmonium state. We consider the contributions of condensates up to dimension eight, we work at leading order in $alpha_s$ and we keep terms which are linear in the strange quark mass $m_s$. We also consider a molecular $D^{*}bar{D}^{*}$ current and we obtain $m_{D^*{D}^*}=(4.13pm 0.10)$, around 200 MeV above the mass of the Y(3930) charmonium state. We conclude that it is possible to describe the Y(4140) structure as a $D_s^*bar{D}_s^*$ molecular state.
We derive a new QCD sum rule for $D(0^+)$ which has only the $Dpi$ continuum with a resonance in the hadron side, using the assumption similar to that has been successfully used in our previous work to the mass of $D_s(0^+)(2317)$. For the value of t
A new analysis is performed in QCD sum rule for the lightest negative parity baryon Lambda (1405). Mixings of three-quark and five-quark Fock components are taken into account. Terms containing up to dimension 12 condensates are computed in the opera
We have studied the charmonium and bottomonium hybrid states with various $J^{PC}$ quantum numbers in QCD sum rules. At leading order in $alpha_s$, the two-point correlation functions have been calculated up to dimension six including the tri-gluon c
The in-medium masses of the bottomonium ground states [$1S$ ($Upsilon (1S), eta_b$) and $1P$ ($chi_{b0},chi_{b1}$)] are investigated in the magnetized vacuum (nuclear medium), using the QCD sum rule framework. In QCD sum rule approach, the mass modif
This paper has been withdrawn by the authors. We have discovered an error in the evaluation of the diagram, which invalidates our conclusion.