The Small Scatter in BH-Host Correlations & The Case for Self-Regulated BH Growth


الملخص بالإنكليزية

Supermassive black holes (BHs) obey tight scaling relations between their mass and their host galaxy properties such as total stellar mass, velocity dispersion, and potential well depth. This has led to the development of self-regulated models for BH growth, in which feedback from the central BH halts its own growth upon reaching a critical threshold. However, models have also been proposed in which feedback plays no role: so long as a fixed fraction of the host gas supply is accreted, relations like those observed can be reproduced. Here, we argue that the scatter in the observed BH-host correlations, and its run with scale, presents a demanding constraint on any model for these correlations, and that it favors self-regulated models of BH growth. We show that the scatter in the stellar mass fraction within a radius R in observed ellipticals and spheroids increases strongly at small R. At fixed total stellar mass (or host velocity dispersion), on very small scales near the BH radius of influence, there is an order-of-magnitude scatter in the amount of gas that must have entered and formed stars. In short, the BH appears to know more about the global host galaxy potential on large scales than the stars and gas supply on small scales. This is predicted in self-regulated models; however, models where there is no feedback would generically predict order-of-magnitude scatter in the BH-host correlations. Likewise, models in which the BH feedback in the bright mode does not regulate the growth of the BH itself, but sets the stellar mass of the galaxy by inducing star formation or blowing out a mass in gas much larger than the galaxy stellar mass, are difficult to reconcile with the scatter on small scales.

تحميل البحث