ﻻ يوجد ملخص باللغة العربية
We present an approximate, analytical calculation of the reionized spectra $C_l^{XX}$ of cosmic microwave background radiation (CMB) anisotropies and polarizations generated by relic gravitational waves (RGWs). Three simple models of reionization are explored, whose visibility functions are fitted by gaussian type of functions as approximations. We have derived the analytical polarization $beta_l$ and temperature anisotropies $alpha_l$, both consisting of two terms proportional to RGWs at the decoupling and at the reionization as well. The explicit dependence of $beta_l$ and $alpha_l$ upon the reionization time $eta_r$, the duration $Deltaeta_r$, and the optical depth $kappa_r$ are demonstrated. Moreover, $beta_l$ and $alpha_l$ contain $kappa_r$ in different coefficients, and the polarization spectra $C_l^{EE}$ are $C_l^{BB}$ are more sensitive probes of reionization than $C_l^{TT}$. These results facilitate examination of the reionization effects, in particular, the degeneracies of $kappa_r$ with the normalization amplitude and with the initial spectral index of RGWs. It is also found that reionization also causes a $kappa_r$-dependent shift $Delta lsim 20$ of the zero multipole $l_0$ of $C_l^{TE}$, an effect that should be included in order to detect the traces of RGWs. Compared with numerical results, the analytical $C_l^{XX}$ as approximation have the limitation. For the primary peaks in the range $lsimeq (30, 600)$, the error is $le 3%$ in three models. In the range $l < 20$ for the reionization bumps, the error is $le 15%$ for $C_l^{EE}$ and $C_l^{BB}$ in the two extended reionization models, and $C_l^{TT}$ and $C_l^{TE}$ have much larger departures for $l<10$. The bumps in the sudden reionization model are too low.
We present an analytical calculation of the spectra of CMB anisotropies and polarizations generated by relic gravitational waves (RGWs). As a substantial extension to the previous studies, three new ingredients are included in this work. Firstly, the
Searching for the signal of primordial gravitational waves in the B-modes (BB) power spectrum is one of the key scientific aims of the cosmic microwave background (CMB) polarization experiments. However, this could be easily contaminated by several f
We discuss the polarization signature of primordial gravitational waves imprinted in cosmic microwave background (CMB) anisotropies. The high-energy physics motivated by superstring theory or M-theory generically yield parity violating terms, which m
We study the effects of pre-recombination physics on the Stochastic Gravitational Wave Background (SGWB) anisotropies induced by the propagation of gravitons through the large-scale density perturbations and their cross-correlation with Cosmic Microw
In this paper, we will give a general introduction to the project of Ali CMB Polarization Telescope (AliCPT), which is a Sino-US joint project led by the Institute of High Energy Physics (IHEP) and has involved many different institutes in China. It