ﻻ يوجد ملخص باللغة العربية
In polarimetry it is important to characterize the polarization properties of the instrument itself to disentangle real astrophysical signals from instrumental effects. This article deals with the accurate measurement and modeling of the polarization properties of real aluminum mirrors, as used in astronomical telescopes. Main goals are the characterization of the aluminum oxide layer thickness at different times after evaporation and its influence on the polarization properties of the mirror. The full polarization properties of an aluminum mirror are measured with Mueller matrix ellipsometry at different incidence angles and wavelengths. The best fit of theoretical Mueller matrices to all measurements simultaneously is obtained by taking into account a model of bulk aluminum with a thin aluminum oxide film on top of it. Full Mueller matrix measurements of a mirror are obtained with an absolute accuracy of ~1% after calibration. The determined layer thicknesses indicate logarithmic growth in the first few hours after evaporation, but it remains stable at a value of 4.12+/-0.08 nm on the long term. Although the aluminum oxide layer is established to be thin, it is necessary to consider it to accurately describe the mirrors polarization properties.
For future space infrared astronomical coronagraphy, we perform experimental studies on the application of aluminum mirrors to a coronagraph. Cooled reflective optics is required for broad-band mid-infrared observations in space, while high-precision
We demonstrate a novel type of solar cell, one that uses fixed negative charges, formed at the interface of n-Si with Al2O3, to generate strong inversion at the Si surface by electrostatic repulsion. Built-in voltages of up to 755 mV are found at thi
Atomic layer deposition (ALD) is an essential tool in semiconductor device fabrication that allows the growth of ultrathin and conformal films to precisely form heterostructures and tune interface properties. The self-limiting nature of the chemical
We describe a search for the A-X infrared bands of AlO with a view to better understand the characteristics of this radical. These bands are infrequently encountered in astronomical sources but surprisingly were very prominent in the spectra of two w
We are developing lumped-element kinetic inductance detectors (LEKIDs) designed to achieve background-limited sensitivity for far-infrared (FIR) spectroscopy on a stratospheric balloon. The Spectroscopic Terahertz Airborne Receiver for Far-InfraRed E