ترغب بنشر مسار تعليمي؟ اضغط هنا

Studying the WHIM with Gamma Ray Bursts

341   0   0.0 ( 0 )
 نشر من قبل Enzo Branchini
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We assess the possibility to detect and characterize the physical state of the missing baryons at low redshift by analyzing the X-ray absorption spectra of the Gamma Ray Burst [GRB] afterglows, measured by a micro calorimeters-based detector with 3 eV resolution and 1000 cm2 effective area and capable of fast re-pointing, similar to that on board of the recently proposed X-ray satellites EDGE and XENIA. For this purpose we have analyzed mock absorption spectra extracted from different hydrodynamical simulations used to model the properties of the Warm Hot Intergalactic Medium [WHIM]. These models predict the correct abundance of OVI absorption lines observed in UV and satisfy current X-ray constraints. According to these models space missions like EDGE and XENIA should be able to detect about 60 WHIM absorbers per year through the OVII line. About 45 % of these have at least two more detectable lines in addition to OVII that can be used to determine the density and the temperature of the gas. Systematic errors in the estimates of the gas density and temperature can be corrected for in a robust, largely model-independent fashion. The analysis of the GRB absorption spectra collected in three years would also allow to measure the cosmic mass density of the WHIM with about 15 % accuracy, although this estimate depends on the WHIM model. Our results suggest that GRBs represent a valid, if not preferable, alternative to Active Galactic Nuclei to study the WHIM in absorption. The analysis of the absorption spectra nicely complements the study of the WHIM in emission that the spectrometer proposed for EDGE and XENIA would be able to carry out thanks to its high sensitivity and large field of view.



قيم البحث

اقرأ أيضاً

Thanks to their enormous energy release, Gamma Rays Bursts (GRBs) have recently attracted a lot of interest to probe the Hubble diagram (HD) deep into the matter dominated era and hence complement Type Ia Supernovae (SNeIa). We consider here three di fferent calibration methods based on the use of a fiducial LCDM model, on cosmographic parameters and on the local regression on SNeIa to calibrate the scaling relations proposed as an equivalent to the Phillips law to standardize GRBs finding any significant dependence. We then investigate the evolution of these parameters with the redshift to obtain any statistical improvement. Under this assumption, we then consider possible systematics effects on the HDs introduced by the calibration method, the averaging procedure and the homogeneity of the sample arguing against any significant bias.
Extraterrestrial gamma-ray astronomy is now a source of new knowledge in the fields of astrophysics, cosmic-ray physics, and the nature of dark matter. The next absolutely necessary step in the development of extraterrestrial high-energy gamma-ray as tronomy is the improvement of the physical and technical characteristics of gamma-ray telescopes, especially the angular and energy resolutions. Such a new generation telescope will be GAMMA-400. GAMMA-400, currently developing gamma-ray telescope, together with X-ray telescope will precisely and detailed observe in the energy range of ~20 MeV to ~1000 GeV and 3-30 keV the Galactic plane, especially, Galactic Center, Fermi Bubbles, Crab, Cygnus, etc. The GAMMA- 400 will operate in the highly elliptic orbit continuously for a long time with the unprecedented angular (~0.01{deg} at E{gamma} = 100 GeV) and energy (~1% at E{gamma} = 100 GeV) resolutions better than the Fermi-LAT, as well as ground gamma-ray telescopes, by a factor of 5-10. GAMMA-400 will permit to resolve gamma rays from annihilation or decay of dark matter particles, identify many discrete sources (many of which are variable), to clarify the structure of extended sources, to specify the data on the diffuse emission.
Short Gamma-Ray Bursts (SGRBs) are expected to form from the coalescence of compact binaries, either of primordial origin or from dynamical interactions in globular clusters. In this paper, we investigate the possibility that the offset and afterglow brightness of a SGRB can help revealing the origin of its progenitor binary. We find that a SGRB is likely to result from the primordial channel if it is observed within 10 kpc from the center of a massive galaxy and shows a detectable afterglow. The same conclusion holds if it is 100 kpc away from a small, isolated galaxy and shows a weak afterglow. On the other hand, a dynamical origin is suggested for those SGRBs with observable afterglow either at a large separation from a massive, isolated galaxy or with an offset of 10-100 kpc from a small, isolated galaxy. We discuss the possibility that SGRBs from the dynamical channel are hosted in intra-cluster globular clusters and find that GRB 061201 may fall within this scenario.
275 - L. Amati 2013
Gamma-Ray Bursts (GRBs) are the most powerful cosmic explosions since the Big Bang, and thus act as signposts throughout the distant Universe. Over the last 2 decades, these ultra-luminous cosmological explosions have been transformed from a mere cur iosity to essential tools for the study of high-redshift stars and galaxies, early structure formation and the evolution of chemical elements. In the future, GRBs will likely provide a powerful probe of the epoch of reionisation of the Universe, constrain the properties of the first generation of stars, and play an important role in the revolution of multi-messenger astronomy by associating neutrinos or gravitational wave (GW) signals with GRBs. Here, we describe the next steps needed to advance the GRB field, as well as the potential of GRBs for studying the Early Universe and their role in the up-coming multi-messenger revolution.
213 - David Bersier 2012
The connection between long GRBs and supernovae is now well established. I briefly review the evidence in favor of this connection and summarise where we are observationally. I also use a few events to exemplify what should be done and what type of d ata are needed. I also look at what we can learn from looking at SNe not associated with GRBs and see how GRBs fit into the broad picture of stellar explosions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا