ﻻ يوجد ملخص باللغة العربية
We discovered in simulations of sliding coaxial nanotubes an unanticipated example of dynamical symmetry breaking taking place at the nanoscale. While both nanotubes are perfectly left-right symmetric and nonchiral, a nonzero angular momentum of phonon origin appears spontaneously at a series of critical sliding velocities, in correspondence with large peaks of the sliding friction. The non-linear equations governing this phenomenon resemble the rotational instability of a forced string. However, several new elements, exquisitely nano appear here, with the crucial involvement of Umklapp and of sliding nanofriction.
The Dzyaloshinskii-Moriya interaction (DMI) in magnetic systems stabilizes spin textures with preferred chirality, applicable to next-generation memory and computing architectures. In perpendicularly magnetized heavy-metal/ferromagnet films, the inte
We report on the linear optical properties of the chiral magnet Cu2OSeO3, specifically associated with the absence of inversion symmetry, the chiral crystallographic structure, and magnetic order. Through spectroscopic ellipsometry, we observe local
In this paper we study how dynamical chiral symmetry breaking is affected by nonzero chiral chemical potential in Dirac semimetals. To perform this study we applied lattice quantum Monte Carlo simulations of Dirac semimetals. Within lattice simulatio
We establish that QED3 can possess a critical number of flavours, N_f^c, associated with dynamical chiral symmetry breaking if, and only if, the fermion wave function renormalisation and photon vacuum polarisation are homogeneous functions at infrare
We have discovered that the influence of the surrounding nanotubes in a bundle is similar to that of a liquid having surface tension equal to the surface energy of the nanotubes. This surprising behaviour is confirmed by the calculation of the self-c