ﻻ يوجد ملخص باللغة العربية
This Astro2010 science white paper provides an overview of the opportunities in low-frequency gravitational-wave astronomy, a new field that is poised to make significant advances. While discussing the broad context of gravitational-wave astronomy, this paper concentrates on the low-frequency region (10^(-5) to 1 Hz), a frequency range abundantly populated in strong sources of gravitational waves including massive black hole mergers, ultra-compact stellar-mass galactic binaries, and capture of compact objects by massive black holes in the nuclei of galaxies.
The focus of this Chapter is on describing the prospective sources of the gravitational wave universe accessible to present and future observations, from kHz, to mHz down to nano-Hz frequencies. The multi-frequency gravitational wave universe gives a
The new field of gravitational wave astrophysics requires a growing pool of students and researchers with unique, interdisciplinary skill sets. It also offers an opportunity to build a diverse, inclusive astronomy community from the ground up. We des
On a time scale of years to decades, gravitational wave (GW) astronomy will become a reality. Low frequency (nanoHz) GWs are detectable through long-term timing observations of the most stable pulsars. Radio observatories worldwide are currently carr
In this paper, we systematically study gravitational waves (GWs) produced by remote compact astrophysical sources. To describe such GWs properly, we introduce three scales, $lambda, ; L_c$ and $L$, denoting, respectively, the typical wavelength of GW
In this paper we present the results of the first low frequency all-sky search of continuous gravitational wave signals conducted on Virgo VSR2 and VSR4 data. The search covered the full sky, a frequency range between 20 Hz and 128 Hz with a range of