We propose a new formalism of quantum subsystems which allows to unify the existing and new methods of reduced description of quantum systems. The main mathematical ingredients are completely positive maps and correlation functions. In this formalism generalized quantum systems can be composed and there is a notion of generalized entanglement. Models of fermionic and bosonic systems and also quantum systems described by the SU(2) symmetry are studied.
One of the most basic notions in physics is the partitioning of a system into subsystems, and the study of correlations among its parts. In this work, we explore these notions in the context of quantum reference frame (QRF) covariance, in which this
partitioning is subject to a symmetry constraint. We demonstrate that different reference frame perspectives induce different sets of subsystem observable algebras, which leads to a gauge-invariant, frame-dependent notion of subsystems and entanglement. We further demonstrate that subalgebras which commute before imposing the symmetry constraint can translate into non-commuting algebras in a given QRF perspective after symmetry imposition. Such a QRF perspective does not inherit the distinction between subsystems in terms of the corresponding tensor factorizability of the kinematical Hilbert space and observable algebra. Since the condition for this to occur is contingent on the choice of QRF, the notion of subsystem locality is frame-dependent.
This paper investigates the relationship between subsystems and time in a closed nonrelativistic system of interacting bosons and fermions. It is possible to write any state vector in such a system as an unentangled tensor product of subsystem vector
s, and to do so in infinitely many ways. This requires the superposition of different numbers of particles, but the theory can describe in full the equivalence relation that leads to a particle-number superselection rule in conventionally defined subsystems. Time is defined as a functional of subsystem changes, thus eliminating the need for any reference to an external time variable. The dynamics of the unentangled subsystem decomposition is derived from a variational principle of dynamical stability, which requires the decomposition to change as little as possible in any given infinitesimal time interval, subject to the constraint that the state of the total system satisfy the Schroedinger equation. The resulting subsystem dynamics is deterministic. This determinism is regarded as a conceptual tool that observers can use to make inferences about the outside world, not as a law of nature. The experiences of each observer define some properties of that observers subsystem during an infinitesimal interval of time (i.e., the present moment); everything else must be inferred from this information. The overall structure of the theory has some features in common with quantum Bayesianism, the Everett interpretation, and dynamical reduction models, but it differs significantly from all of these. The theory of information described here is largely qualitative, as the most important equations have not yet been solved. The quantitative level of agreement between theory and experiment thus remains an open question.
Quantum error correction provides a fertile context for exploring the interplay of feedback control, microscopic physics and noncommutative probability. In this paper we deepen our understanding of this nexus through high-level analysis of a class of
quantum memory models that we have previously proposed, which implement continuous-ti
The entanglement production in bipartite quantum systems is studied for initially unentangled product eigenstates of the subsystems, which are assumed to be quantum chaotic. Based on a perturbative computation of the Schmidt eigenvalues of the reduce
d density matrix, explicit expressions for the time-dependence of entanglement entropies, including the von Neumann entropy, are given. An appropriate re-scaling of time and the entropies by their saturation values leads a universal curve, independent of the interaction. The extension to the non-perturbative regime is performed using a recursively embedded perturbation theory to produce the full transition and the saturation values. The analytical results are found to be in good agreement with numerical results for random matrix computations and a dynamical system given by a pair of coupled kicked rotors.
We derive the general structure of noiseless subsystems for optical radiation contained in a sequence of pulses undergoing collective depolarization in an optical fiber. This result is used to identify optimal ways to implement quantum communication
over a collectively depolarizing channel, which in general combine various degrees of freedom, such as polarization and phase, into joint hybrid schemes for protecting quantum coherence.