ترغب بنشر مسار تعليمي؟ اضغط هنا

Interstellar Extinction Law toward the Galactic Center III: J, H, Ks bands in the 2MASS and the MKO systems, and 3.6, 4.5, 5.8, 8.0 micron in the Spitzer/IRAC system

422   0   0.0 ( 0 )
 نشر من قبل Shogo Nishiyama
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have determined interstellar extinction law toward the Galactic center (GC) at the wavelength from 1.2 to 8.0 micron, using point sources detected in the IRSF/SIRIUS near-infrared survey and those in the 2MASS and Spitzer/IRAC/GLIMPSE II catalogs. The central region |l| < 3deg and |b| < 1deg has been surveyed in the J, H and Ks bands with the IRSF telescope and the SIRIUS camera whose filters are similar to the Mauna Kea Observatories (MKO) near-infrared photometric system. Combined with the GLIMPSE II point source catalog, we made Ks versus (Ks - lambda) color-magnitude diagrams where lambda = 3.6, 4.5, 5.8, and 8.0 micron. The Ks magnitudes of bulge red clump stars and the (Ks - lambda) colors of red giant branches are used as a tracer of the reddening vector in the color-magnitude diagrams. From these magnitudes and colors, we have obtained the ratios of total to selective extinction A(Ks)/E(Ks-lambda) for the four IRAC bands. Combined with A(lambda)/A(Ks) for the J and H bands derived by Nishiyama et al., we obtain A(J):A(H):A(Ks):A([3.6]):A([4.5]):A([5.8]):A([8.0])=3.02:1.73:1:0.50:0.39:0.36:0.43 for the line of sight toward the GC. This confirms the flattening of the extinction curve at lambda > 3 micron from a simple extrapolation of the power-law extinction at shorter wavelengths, in accordance with recent studies. The extinction law in the 2MASS JHKs bands has also been calculated, and a good agreement with that in the MKO system is found. In nearby molecular clouds and diffuse interstellar medium, the lack of reliable measurements of the total to selective extinction ratios hampers unambiguous determination of the extinction law; however, observational results toward these lines of sight cannot be reconciled with a single extinction law.



قيم البحث

اقرأ أيضاً

We have determined the ratios of total to selective extinction directly from observations in the optical V band and near-infrared J band toward the Galactic center. The OGLE (Optical Gravitational Lensing Experiment) Galactic bulge fields have been o bserved with the SIRIUS camera on the IRSF telescope, and we obtain A(V)/E(V-J)=1.251+-0.014 and A(J)/E(V-J)=0.225+-0.007. From these ratios, we have derived A(J)/A(V) = 0.188+-0.005; if we combine A(J)/A(V) with the near-infrared extinction ratios obtained by Nishiyama et al. for more reddened fields near the Galactic center, we get A(V) : A(J) : A(H) : A(Ks) = 1 : 0.188 : 0.108 : 0.062, which implies steeply declining extinction toward the longer wavelengths. In particular, it is striking that the Ks band extinction is approx 1/16 of the visual extinction A(V) much smaller than one tenth of A(V) so far employed.
We have determined the wavelength dependence of the extinction in the near-infrared bands ($J$, $H$, $K_{mathrm S}$) toward the Galactic center from the VVV (VISTA Variables in the Via Lactea) aperture photometry of the stars in the region $|l|lesssi m2^circ.0$ and $0^circ.5lesssim|b|lesssim1^circ.0$; this region consists of 12 VVV tiles. We have found significant systematic discrepancy up to $sim0.1$ mag between the stellar magnitudes of the same stars in overlapping VVV tiles. However, by carefully using the positions of red clump stars in color-magnitude diagrams as a tracer of the extinction and reddening, we are able to determine the average of the ratios of total to selective extinction to be $A(K_{mathrm S})/E(H-K_{mathrm S})=1.44pm0.04$, $A(K_{mathrm S})/E(J-K_{mathrm S})=0.423pm0.024$, $A(H)/E(J-H)=1.25pm0.04$; from these ratios, a steep power law $A(lambda)proptolambda^{-alpha}$ whose index $alpha$ is $sim2.0-2.3$ in the $J,H,K_{mathrm S}$ wavelength range is estimated. The obtained wavelength dependence is consistent with those obtained with the MKO photometric system employed in SIRIUS camera attached to the IRSF telescope in previous studies. Such a steep decline of extinction toward the longer wavelengths is also in line with recent results based on deep imaging surveys. The determined extinction law seems to be variable in the VVV tile to tile, and it is not clear how much of this is due to real sight line variations and due to observational systematic effects. Thus, there might be room for improvement of the extinction law determination from the existing VVV data, but this steep extinction law tends to locate heavily reddened objects in the Galactic plane more distant from us when their distance moduli are calculated from the observed reddening values.
We describe and discuss remarkable infrared spectra, covering key portions of the $2-5$ $mu$m wavelength interval, of the probable OH/IR supergiant 2MASS J17470898$-$2829561 (2M1747), located in direction of the Sgr B molecular cloud complex within t he Central Molecular Zone (CMZ) of the Galaxy. This star was originally singled out for examination based on its suitability for spectroscopy of lines of H$_3^+$ in the CMZ. Analysis of the spectra shows that 2M1747 is deeply embedded within Sgr B1, with A$_V$ $gtrsim$ 100 mag, making it the only star within Sgr B for which infrared spectra have been obtained at present, and thereby a unique infrared probe of the dense interstellar medium within the CMZ. Despite the high extinction, spectra of 2M1747 reveal a veiled photosphere in the $K$ band and circumstellar gas in the $M$ band, giving clues as to its nature. Its $ 3.5-4.0$ $mu$m spectrum contains the strongest absorption lines of H$_3^+$ observed toward any object to date. The $4.5-4.8$ $mu$m spectrum has impressively deep and wide absorption lines of interstellar CO, most of which arise in dense gas within Sgr B1. The $3-5$ $mu$m spectrum also contains several solid state absorption features, which are characteristic of both dense and diffuse clouds, and which raise questions about the identifications of some of these features. We discuss the nature of the star, the extinction to it, the extinction law for dust in the CMZ, and the identifications of the various solid-state features and where they are produced along this complex line of sight.
103 - Jian Gao 2008
Observationally, both the 3.4micron aliphatic hydrocarbon C--H stretching absorption feature and the 9.7micron amorphous silicate Si--O stretching absorption feature show considerable variations from the local diffuse interstellar medium (ISM) to Gal actic center (GC): both the ratio of the visual extinction (A_V) to the 9.7micron Si--O optical depth (tausil) and the ratio of A_V to the 3.4micron C--H optical depth (tauahc) of the solar neighborhood local diffuse ISM are about twice as much as that of the GC. In this work, we try to explain these variations in terms of a porous dust model consisting of a mixture of amorphous silicate, carbonaceous organic refractory dust (as well as water ice for the GC dust).
345 - P.F.L. Maxted 2012
We present new lightcurves of the massive hot Jupiter system WASP-18 obtained with the Spitzer spacecraft covering the entire orbit at 3.6 micron and 4.5 micron. These lightcurves are used to measure the amplitude, shape and phase of the thermal phas e effect for WASP-18b. We find that our results for the thermal phase effect are limited to an accuracy of about 0.01% by systematic noise sources of unknown origin. At this level of accuracy we find that the thermal phase effect has a peak-to-peak amplitude approximately equal to the secondary eclipse depth, has a sinusoidal shape and that the maximum brightness occurs at the same phase as mid-occultation to within about 5 degrees at 3.6 micron and to within about 10 degrees at 4.5 micron. The shape and amplitude of the thermal phase curve imply very low levels of heat redistribution within the atmosphere of the planet. We also perform a separate analysis to determine the system geometry by fitting a lightcurve model to the data covering the occultation and the transit. The secondary eclipse depths we measure at 3.6 micron and 4.5 micron are in good agreement with previous measurements and imply a very low albedo for WASP-18b. The parameters of the system (masses, radii, etc.) derived from our analysis are in also good agreement with those from previous studies, but with improved precision. We use new high-resolution imaging and published limits on the rate of change of the mean radial velocity to check for the presence of any faint companion stars that may affect our results. We find that there is unlikely to be any significant contribution to the flux at Spitzer wavelengths from a stellar companion to WASP-18. We find that there is no evidence for variations in the times of eclipse from a linear ephemeris greater than about 100 seconds over 3 years.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا