ﻻ يوجد ملخص باللغة العربية
The evolution of the particle background at an altitude of ~540 km during the time interval between 1996 and 2007 is studied using the particle monitor of the High Energy X-ray Timing Experiment on board NASAs Rossi X-ray Timing Explorer. A special emphasis of this study is the location and strength of the South Atlantic Anomaly (SAA). The size and strength of the SAA are anti-correlated with the the 10.7 cm radio flux of the Sun, which leads the SAA strength by ~1 year reflecting variations in solar heating of the upper atmosphere. The location of the SAA is also found to drift westwards with an average drift rate of about 0.3 deg/yr following the drift of the geomagnetic field configuration. Superimposed to this drift rate are irregularities, where the SAA suddenly moves eastwards and where furthermore the speed of the drift changes. The most prominent of these irregularities is found in the second quarter of 2003 and another event took place in 1999. We suggest that these events are previously unrecognized manifestations of the geomagnetic jerks of the Earths magnetic field.
We present a study of the solar-cycle variations of >80 MeV proton flux intensities in the lower edge of the inner radiation belt, based on the measurements of the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) missi
Chondrites are rocky fragments of asteroids that formed at different times and heliocentric distances in the early solar system. Most chondrite groups contain water-bearing minerals, attesting that both water-ice and dust were accreted on their paren
It is known that the so-called problem of solar power pacemaker related to possible existence of some hidden but key mechanism of energy influence of the Sun on fundamental geophysical processes is one of the principal and puzzling problems of modern
The scattering of fast radio bursts (FRBs) by the intergalactic medium (IGM) is explored using cosmological hydrodynamical simulations. We confirm that the scattering by the clumpy IGM has significant line-of-sight variations. We demonstrate that the
A coarse-graining framework is implemented to analyze nonlinear processes, measure energy transfer rates and map out the energy pathways from simulated global ocean data. Traditional tools to measure the energy cascade from turbulence theory, such as