Let M be an irreducible normal algebraic monoid with unit group G. It is known that G admits a Rosenlicht decomposition, G=G_antG_aff, where G_ant is the maximal anti-affine subgroup of G, and G_aff the maximal normal connected affine subgroup of G. In this paper we show that this decomposition extends to a decomposition M=G_antM_aff, where M_aff is the affine submonoid M_aff=bar{G_aff}. We then use this decomposition to calculate $mathcal{O}(M)$ in terms of $mathcal{O}(M_aff)$ and G_aff, G_antsubset G. In particular, we determine when M is an anti-affine monoid, that is when $mathcal{O}(M)=K$.