ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of X-rays from the jet-driving Symbiotic Star MWC 560

120   0   0.0 ( 0 )
 نشر من قبل Matthias Stute
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the detection of X-ray emission from the jet-driving symbiotic star MWC 560. We observed MWC 560 with XMM-Newton for 36 ks. We fitted the spectra from the EPIC pn, MOS1 and MOS2 instruments with XSPEC and examined the light curves with the package XRONOS. The spectrum can be fitted with a highly absorbed hard X-ray component from an optically-thin hot plasma, a Gaussian emission line with an energy of 6.1 keV and a less absorbed soft thermal component. The best fit is obtained with a model in which the hot component is produced by optically thin thermal emission from an isobaric cooling flow with a maximum temperature of 61 keV, which might be created inside an optically-thin boundary layer on the surface of the accreting with dwarf. The derived parameters of the hard component detected in MWC 560 are in good agreement with similar objects as CH Cyg, SS7317, RT Cru and T CrB, which all form a new sub-class of symbiotic stars emitting hard X-rays. Our previous numerical simulations of the jet in MWC 560 showed that it should produce detectable soft X-ray emission. We infer a temperature of 0.17 keV for the observed soft component, i.e. less than expected from our models. The total soft X-ray flux (i.e. at < 3 keV) is more than a factor 100 less than predicted for the propagating jet soon after its birth (<0.3 yr), but consistent with the value expected due its decrease with age. The ROSAT upper limit is also consistent with such a decrease. We find aperiodic or quasi-periodic variability on timescales of minutes and hours, but no periodic rapid variability. All results are consistent with an accreting white dwarf powering the X-ray emission and the existence of an optically-thin boundary layer around it.



قيم البحث

اقرأ أيضاً

We analyse optical photometric data of short term variability (flickering) of the accreting white dwarf in the jet-ejecting symbiotic star MWC560. The observations are obtained in 17 nights during the period November 2011 - October 2019. The colour-m agnitude diagram shows that the hot component of the system becomes redder as it gets brighter. For the flickering source we find that it has colour 0.14 < B-V < 0.40, temperature in the range 6300 < T_fl < 11000 K, and radius 1.2 < R_fl < 18 Rsun. We find a strong correlation (correlation coefficient 0.76, significance < 0.001) between B band magnitude and the average radius of the flickering source - as the brightness of the system increases the size of the flickering source also increases. The estimated temperature is similar to that of the bright spot of cataclysmic variables. In 2019 the flickering is missing, and the B-V colour of the hot component becomes bluer.
155 - Matthias Stute 2013
Hen 3-1341 is a symbiotic binary system consisting of a white dwarf and a red giant star that is one of about ten symbiotics that show hints of jets. The bipolar jets have been detected through displaced components of emission lines during its outbur st from 1998 to 2004. These components disappeared when Hen 3-1341 reached quiescence. On February 23, 2012, Hen 3-1341 started a new outburst with the emergence of new bipolar jets on March 3, 2012. We observed Hen 3-1341 during quiescence with XMM-Newton in March 2010 with an effective exposure time of 46.8 ks and with Swift on March 8-11, 2012 as ToO observations with an effective exposure time of 10 ks in order to probe the interaction of the jet with the ambient medium and also the accretion onto the white dwarf. We fitted the XMM-Newton X-ray spectra with XSPEC and examined the X-ray and UV light curves. We report the detection of X-ray emission during quiescence from Hen 3-1341 with XMM-Newton. The spectrum can be fitted with an absorbed one-temperature plasma or an absorbed blackbody. We did not detect Hen 3-1341 during our short Swift exposure. Neither periodic or aperiodic X-ray nor UV variability were found. Our XMM-Newton data suggest that interaction of the residual jet with the interstellar medium might survive for a long time after outbursts and might be responsible for the observed X-ray emission during quiescence. Additional data are strongly needed to confirm these suggestions.
112 - Matthias Stute 2011
We report the detection of X-ray emission from the symbiotic star V1329 Cyg with XMM-Newton. The spectrum from the EPIC pn, MOS1 and MOS2 instruments consists of a two-temperature plasma with k T = 0.11 keV and k T = 0.93 keV. Unlike the vast majorit y of symbiotic stars detected in X-rays, the soft component of the spectrum seems to be absorbed only by interstellar material. The shock velocities corresponding to the observed temperatures are about 300 km/s and about 900 km/s. We did not find either periodic or aperiodic X-ray variability, with upper limits on the amplitudes of such variations being 46 % and 16 % (rms), respectively. We also did not find any ultraviolet variability with an rms amplitude of more than approximately 1 %. The derived velocities and the unabsorbed nature of the soft component of the X-ray spectrum suggest that some portion of the high energy emission could originate in shocks within a jet and beyond the symbiotic nebula. The lower velocity is consistent with the expansion velocity of the extended structure present in HST observations. The higher velocity could be associated with an internal shock at the base of the jet or with shocks in the accretion region.
We performed hydrodynamical simulations with and without radiative cooling of jet models with parameters representative for the symbiotic system MWC 560. For symbiotic systems we have to perform jet simulations of a pulsed underdense jet in a high de nsity ambient medium. We present the jet structure resulting from our simulations and calculate emission plots which account for expected radiative processes. In addition, our calculations provide expansion velocities for the jet bow shock, the density and temperature structure in the jet, and the propagation and evolution of the jet pulses. In MWC 560 the jet axis is parallel to the line of sight so that the outflowing jet gas can be seen as blue shifted, variable absorption lines in the continuum of the underlying jet source. Based on our simulations we calculate and discuss synthetic absorption profiles. Based on a detailed comparison between model spectra and observations we discuss our hydrodynamical calculations for a pulsed jet in MWC 560 and suggest improvements for future models.
MWC 560 (= V694 Mon) is the only known Symbiotic Star system in which the jet axis is practically parallel to the line of sight. Therefore this system is predestinated to study the dynamical evolution and the propagation of stellar jets. Spectroscopi c monitoring done by Schmid et al. (2001) showed that the outflow is seen as absorption features in the continuum of the accretion disk and the accreting white dwarf, the emission line spectrum of the accretion disk and the spectrum of the red giant. We present the first numerical simulations of the jet of this particular object using the NIRVANA code (Ziegler & Yorke 1997) in order to reproduce the velocity structures seen in the observational data. This code solves the equations of hydrodynamics and was modified to calculate radiative losses due to non-equilibrium cooling by line-emission (Thiele 2000).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا