ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics of Multiferroic Domain Wall in Spin-Cycloidal Ferroelectric DyMnO$_{3}$

176   0   0.0 ( 0 )
 نشر من قبل Fumitaka Kagawa
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the dielectric dispersion of the giant magnetocapacitance (GMC) in multiferroic DyMnO$_{3}$ over a wide frequency range. The GMC is found to be attributable not to the softened electromagnon but to the electric-field-driven motion of multiferroic domain wall (DW). In contrast to conventional ferroelectric DWs, the present multiferroic DW motion holds extremely high relaxation rate of $sim$$10^{7}$ s$^{-1}$ even at low temperatures. This mobile nature as well as the model simulation suggests that the multiferroic DW is not atomically thin as in ferroelectrics but thick, reflecting its magnetic origin.



قيم البحث

اقرأ أيضاً

We report magnetization and neutron scattering measurements down to 60 mK on a new family of Fe based kagome antiferromagnets, in which a strong local spin anisotropy combined with a low exchange path network connectivity lead to domain walls interse cting the kagome planes through strings of free spins. These produce unfamiliar slow spin dynamics in the ordered phase, evolving from exchange-released spin-flips towards a cooperative behavior on decreasing the temperature, probably due to the onset of long-range dipolar interaction. A domain structure of independent magnetic grains is obtained that could be generic to other frustrated magnets.
We have measured the contribution of magnetic domain walls (DWs) to the electric resistance in epitaxial manganite films patterned by electron-beam lithography into a track containing a set of notches. We find a DW resistance-area (RA) product of ~2. 5 10^(-13) Ohm/m^2 at low temperature and bias, which is several orders of magnitude larger than the values reported for 3d ferromagnets. However, the current-voltage characteristics are highly linear which indicates that the DWs are not phase separated but metallic. The DWRA is found to increase upon increasing the injected current, presumably reflecting some deformation of the wall by spin-transfer. When increasing temperature, the DWRA vanishes at ~225K which is likely related to the temperature dependence of the film anisotropy.
549 - H. Kuroe , K. Aoki , T. Sato 2013
We present the muon spin relaxation/rotation spectra in the multiferroic compound (Cu,Zn)$_{3}$Mo$_{2}$O$_{9}$. The parent material Cu$_{3}$Mo$_{2}$O$_{9}$ has a multiferroic phase below $T_{rm N}$ = 8.0 K, where the canted antiferromagnetism and the ferroelectricity coexist. The asymmetry time spectra taken at RIKEN-RAL pulsed muon facility show a drastic change at $T_{rm N}$. At low temperatures the weakly beating oscillation caused by the static internal magnetic fields in the antiferromagnetic phase was observed in Cu$_{3}$Mo$_{2}$O$_{9}$ and the lightly ($0.5%$) Zn-doped sample. From the fitting of the oscillating term, we obtain the order parameter in these samples: ferromagnetic moment in two sublattices of antiferromagnet. In the heavily ($5.0%$) Zn-doped sample, the muon-spin oscillation is rapidly damped. The frequency-domain spectrum of this sample suggests a formation of magnetic superstructure.
LiCu2O2 is the first multiferroic cuprate to be reported and its ferroelectricity is induced by complex magnetic ordering in ground state, which is still in controversy today. Herein, we have grown nearly untwinned LiCu2O2 single crystals of high qua lity and systematically investigated their dielectric and ferroelectric behaviours in external magnetic fields. The highly anisotropic response observed in different magnetic fields apparently contradicts the prevalent bc- or ab- plane cycloidal spin model. Our observations give strong evidence supporting a new helimagnetic picture in which the normal of the spin helix plane is along the diagonal of CuO4 squares which form the quasi-1D spin chains by edge-sharing. Further analysis suggests that the spin helix in the ground state is elliptical and in the intermediate state the present c-axis collinear SDW model is applicable with some appropriate modifications. In addition, our studies show that the dielectric and ferroelectric measurements could be used as probes for the characterization of the complex spin structures in multiferroic materials due to the close tie between their magnetic and electric orderings.
We report the discovery of a complete suppression of ferroelectricity in $MnWO_4$ by 10 % iron substitution and its restoration in external magnetic fields. The spontaneous polarization in $Mn_{0.9}Fe_{0.1}WO_4$ arises below 12 K in external fields a bove 4 T. The magnetic/ferroelectric phase diagram is constructed from the anomalies of the dielectric constant, polarization, magnetization, and heat capacity. The observations are qualitatively described by a mean field model with competing interactions and strong anisotropy. We propose that the magnetic field induces a non-collinear inversion symmetry breaking magnetic structure in $Mn_{0.9}Fe_{0.1}WO_4$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا