ﻻ يوجد ملخص باللغة العربية
We report on strong coupling between surface plasmon polaritons (SPP) and Rhodamine 6G (R6G) molecules, with double vacuum Rabi splitting energies up to 230 and 110 meV. In addition, we demonstrate the emission of all three energy branches of the strongly coupled SPP-exciton hybrid system, revealing features of system dynamics that are not visible in conventional reflectometry. Finally, in analogy to tunable-Q microcavities, we show that the Rabi splitting can be controlled by adjusting the interaction time between waveguided SPPs and R6G deposited on top of the waveguide. The interaction time can be controlled with sub-fs precision by adjusting the length of the R6G area with standard lithography methods.
Stimulated Brillouin scattering in optical waveguides is a fundamental interaction between light and acoustic waves mediated by electrostriction and photoelasticity. In this paper, we revisit the usual theory of this inelastic scattering process to g
Controlling the directionality of surface plasmon polaritons (SPPs) has been widely studied, while the direction of SPPs was always switched by orthogonal polarizations in the reported methods. Here, we present a scheme to control the directionality
We propose a new type of reflective polarizer based on polarization-dependent coupling to surface-plasmon polaritons (SPPs) from free space. This inexpensive polarizer is relatively narrowband but features an extinction ratio of up to 1000 with effic
Surface plasmon polaritons have attracted varies of interests due to its special properties, especially in the polarization-controlled devices. Typically, the polarization-controlled devices include directional coupling, focusing lens and plasmonic v
We have observed laser-like emission of surface plasmon polaritons (SPPs) decoupled to the glass prism in an attenuated total reflection setup. SPPs were excited by optically pumped molecules in a polymeric film deposited on the top of the silver fil