ترغب بنشر مسار تعليمي؟ اضغط هنا

The CATS Service: an Astrophysical Research Tool

129   0   0.0 ( 0 )
 نشر من قبل Heinz Andernach
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف O.V. Verkhodanov




اسأل ChatGPT حول البحث

We describe the current status of CATS (astrophysical CATalogs Support system), a publicly accessible tool maintained at Special Astrophysical Observatory of the Russian Academy of Sciences (SAO RAS) (http://cats.sao.ru) allowing one to search hundreds of catalogs of astronomical objects discovered all along the electromagnetic spectrum. Our emphasis is mainly on catalogs of radio continuum sources observed from 10 MHz to 245 GHz, and secondly on catalogs of objects such as radio and active stars, X-ray binaries, planetary nebulae, HII regions, supernova remnants, pulsars, nearby and radio galaxies, AGN and quasars. CATS also includes the catalogs from the largest extragalactic surveys with non-radio waves. In 2008 CATS comprised a total of about 10e9 records from over 400 catalogs in the radio, IR, optical and X-ray windows, including most source catalogs deriving from observations with the Russian radio telescope RATAN-600. CATS offers several search tools through different ways of access, e.g. via web interface and e-mail. Since its creation in 1997 CATS has managed about 10,000 requests. Currently CATS is used by external users about 1500 times per day and since its opening to the public in 1997 has received about 4000 requests for its selection and matching tasks.



قيم البحث

اقرأ أيضاً

A long-standing problem of astrophysical research is how to simultaneously obtain spectra of thousands of sources randomly positioned in the field of view of a telescope. Digital Micromirror Devices, used as optical switches, provide a most powerful solution allowing to design a new generation of instruments with unprecedented capabilities. We illustrate the key factors (opto-mechanical, cryo-thermal, cosmic radiation environment,...) that constrain the design of DMD-based multi-object spectrographs, with particular emphasis on the IR spectroscopic channel onboard the EUCLID mission, currently considered by the European Space Agency for a 2017 launch date.
149 - R. E. Ryan Jr 2011
We present a suite of IDL routines to interactively run GALFIT whereby the various surface brightness profiles (and their associated parameters) are represented by regions, which the User is expected to place. The regions may be saved and/or loaded f rom the ASCII format used by ds9 or in the Hierarchical Data Format (version 5). The software has been tested to run stably on Mac OS X and Linux with IDL 7.0.4. In addition to its primary purpose of modeling galaxy images with GALFIT, this package has several ancillary uses, including a flexible image display routines, several basic photometry functions, and qualitatively assessing Source Extractor. We distribute the package freely and without any implicit or explicit warranties, guarantees, or assurance of any kind. We kindly ask users to report any bugs, errors, or suggestions to us directly (as opposed to fixing them themselves) to ensure version control and uniformity.
We discuss the general design of the ANTARES code which is intended for simulations in stellar hydrodynamics with radiative transfer and realistic microphysics in 1D, 2D and 3D. We then compare the quality of various numerical methods. We have applie d ANTARES in order to obtain high resolution simulations of solar granulation which we describe and analyze. In order to obtain high resolution, we apply grid refinement to a region predominantly occupied by an exploding granule. Strong, rapidly rotating vortex tubes of small diameter (~100 km) generated by the downdrafts and ascending into the photosphere near the granule boundaries evolve, often entering the photosphere from below in an arclike fashion. They essentially contribute to the turbulent velocity field near the granule boundaries.
75 - B. Burkhart , S. Appel , S. Bialy 2020
Turbulence is a key process in many fields of astrophysics. Advances in numerical simulations of fluids over the last several decades have revolutionized our understanding of turbulence and related processes such as star formation and cosmic ray prop agation. However, data from numerical simulations of astrophysical turbulence are often not made public. We introduce a new simulation-oriented database for the astronomical community: The Catalogue for Astrophysical Turbulence Simulations (CATS), located at www.mhdturbulence.com. CATS includes magnetohydrodynamic (MHD) turbulent box simulation data products generated by the public codes athena++, arepo, enzo, and flash. CATS also includes several synthetic observational data sets, such as turbulent HI data cubes. We also include measured power spectra and 3-point correlation functions from some of these data. We discuss the importance of open source statistical and visualization tools for the analysis of turbulence simulations such as those found in CATS.
In astrophysics, the two main methods traditionally in use for solving the Euler equations of ideal fluid dynamics are smoothed particle hydrodynamics and finite volume discretization on a stationary mesh. However, the goal to efficiently make use of future exascale machines with their ever higher degree of parallel concurrency motivates the search for more efficient and more accurate techniques for computing hydrodynamics. Discontinuous Galerkin (DG) methods represent a promising class of methods in this regard, as they can be straightforwardly extended to arbitrarily high order while requiring only small stencils. Especially for applications involving comparatively smooth problems, higher-order approaches promise significant gains in computational speed for reaching a desired target accuracy. Here, we introduce our new astrophysical DG code TENET designed for applications in cosmology, and discuss our first results for 3D simulations of subsonic turbulence. We show that our new DG implementation provides accurate results for subsonic turbulence, at considerably reduced computational cost compared with traditional finite volume methods. In particular, we find that DG needs about 1.8 times fewer degrees of freedom to achieve the same accuracy and at the same time is more than 1.5 times faster, confirming its substantial promise for astrophysical applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا