ترغب بنشر مسار تعليمي؟ اضغط هنا

The unusual X-ray light-curve of GRB 080307: the onset of the afterglow?

334   0   0.0 ( 0 )
 نشر من قبل Kim Page
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف K.L. Page




اسأل ChatGPT حول البحث

Swift-detected GRB 080307 showed an unusual smooth rise in its X-ray light-curve around 100 seconds after the burst, at the start of which the emission briefly softened. This `hump has a longer duration than is normal for a flare at early times and does not demonstrate a typical flare profile. Using a two component power-law-to-exponential model, the rising emission can be modelled as the onset of the afterglow, something which is very rarely seen in Swift-X-ray light-curves. We cannot, however, rule out that the hump is a particularly slow early-time flare, or that it is caused by upscattered reverse shock electrons.



قيم البحث

اقرأ أيضاً

We have identified spectral features in the late-time X-ray afterglow of the unusually long, slow-decaying GRB 130925A using NuSTAR, Swift-XRT, and Chandra. A spectral component in addition to an absorbed power-law is required at $>4sigma$ significan ce, and its spectral shape varies between two observation epochs at $2times10^5$ and $10^6$ seconds after the burst. Several models can fit this additional component, each with very different physical implications. A broad, resolved Gaussian absorption feature of several keV width improves the fit, but it is poorly constrained in the second epoch. An additive black body or second power-law component provide better fits. Both are challenging to interpret: the blackbody radius is near the scale of a compact remnant ($10^8$ cm), while the second powerlaw component requires an unobserved high-energy cutoff in order to be consistent with the non-detection by Fermi-LAT.
In order to constrain the broad-band spectral energy distribution of the afterglow of GRB 100621A, dedicated observations were performed in the optical/near-infrared with the 7-channel Gamma-Ray Burst Optical and Near-infrared Detector (GROND) at the 2.2m MPG/ESO telescope, in the sub-millimeter band with the large bolometer array LABOCA at APEX, and at radio frequencies with ATCA. Utilizing also Swift X-ray observations, we attempt an interpretation of the observational data within the fireball scenario. The afterglow of GRB 100621A shows a very complex temporal as well as spectral evolution. We identify three different emission components, the most spectacular one causing a sudden intensity jump about one hour after the prompt emission. The spectrum of this component is much steeper than the canonical afterglow. We interpret this component using the prescription of Vlasis et al. (2011) for a two-shell collision after the first shell has been decelerated by the circumburst medium. We use the fireball scenario to derive constraints on the microphysical parameters of the first shell. Long-term energy injection into a narrow jet seems to provide an adequate description. Another noteworthy result is the large ($A_V$ = 3.6 mag) line-of-sight host extinction of the afterglow in an otherwise extremely blue host galaxy.
158 - B. Gendre 2011
Aim: To present the optical observations of the afterglow of GRB 101024A and to try to reconcile these observations with the X-ray afterglow data of GRB 101024A using current afterglow models Method: We employ early optical observations using the Z adko Telescope combined with X-ray data and compare with the reverse shock/forward shock model. Results: The early optical light curve reveals a very unusual steep decay index of alpha~5. This is followed by a flattening and possibly a plateau phase coincident with a similar feature in the X-ray. We discuss these observations in the framework of the standard reverse shock/forward shock model and energy injection.We note that the plateau phase might also be the signature of the formation of a new magnetar.
In this work we present spectra of all $gamma$-ray burst (GRB) afterglows that have been promptly observed with the X-shooter spectrograph until 31-03-2017. In total, we obtained spectroscopic observations of 103 individual GRBs observed within 48 ho urs of the GRB trigger. Redshifts have been measured for 97 per cent of these, covering a redshift range from 0.059 to 7.84. Based on a set of observational selection criteria that minimize biases with regards to intrinsic properties of the GRBs, the follow-up effort has been focused on producing a homogeneous sample of 93 afterglow spectra for GRBs discovered by the Swift satellite. We here provide a public release of all the reduced spectra, including continuum estimates and telluric absorption corrections. For completeness, we also provide reductions for the 18 late-time observations of the underlying host galaxies. We provide an assessment of the degree of completeness with respect to the parent GRB population, in terms of the X-ray properties of the bursts in the sample and find that the sample presented here is representative of the full Swift sample. We constrain the fraction of dark bursts to be < 28 per cent and we confirm previous results that higher optical darkness is correlated with increased X-ray absorption. For the 42 bursts for which it is possible, we provide a measurement of the neutral hydrogen column density, increasing the total number of published HI column density measurements by $sim$ 33 per cent. This dataset provides a unique resource to study the ISM across cosmic time, from the local progenitor surroundings to the intervening universe.
83 - D. Guetta , F. Fiore , V. DElia 2006
We present a detailed study of the spectral and temporal properties of the X-ray and optical emission of GRB050713a up to 0.5 day after the main GRB event. The X-ray light curve exhibits large amplitude variations with several rebrightenings superpos ed on the underlying three-segment broken powerlaw that is often seen in Swift GRBs. Our time-resolved spectral analysis supports the interpretation of a long-lived central engine, with rebrightenings consistent with energy injection in refreshed shocks as slower shells generated in the central engine prompt phase catch up with the afterglow shock at later times. Our sparsely-sampled light curve of the optical afterglow can be fitted with a single power law without large flares. The optical decay index appears flatter than the X-ray one, especially at later times.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا