ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient routing of single photons by one atom and a microtoroidal cavity

111   0   0.0 ( 0 )
 نشر من قبل Takao Aoki
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Single photons from a coherent input are efficiently redirected to a separate output by way of a fiber-coupled microtoroidal cavity interacting with individual Cesium atoms. By operating in an overcoupled regime for the input-output to a tapered fiber, our system functions as a quantum router with high efficiency for photon sorting. Single photons are reflected and excess photons transmitted, as confirmed by observations of photon antibunching (bunching) for the reflected (transmitted) light. Our photon router is robust against large variations of atomic position and input power, with the observed photon antibunching persisting for intracavity photon number 0.03 lesssim n lesssim 0.7.



قيم البحث

اقرأ أيضاً

We theoretically analyse the efficiency of a quantum memory for single photons. The photons propagate along a transmission line and impinge on one of the mirrors of a high-finesse cavity. The quantum memory is constituted by a single atom within the optical resonator. Photon storage is realised by the controlled transfer of the photonic excitation into a metastable state of the atom and occurs via a Raman transition with a suitably tailored laser pulse, which drives the atom. Our study is supported by numerical simulations, in which we include the modes of the transmission line and we use the experimental parameters of existing experimental setups. It reproduces the results derived using input-output theory in the corresponding regime and can be extended to compute dynamics where the input-output formalism cannot be straightforwardly applied. Our analysis determines the maximal storage efficiency, namely, the maximal probability to store the photon in a stable atomic excitation, in the presence of spontaneous decay and cavity parasitic losses. It further delivers the form of the laser pulse that achieves the maximal efficiency by partially compensating parasitic losses. We numerically assess the conditions under which storage based on adiabatic dynamics is preferable to non-adiabatic pulses. Moreover, we systematically determine the shortest photon pulse that can be efficiently stored as a function of the system parameters.
63 - P. Maunz , T. Puppe , I. Schuster 2004
All conventional methods to laser-cool atoms rely on repeated cycles of optical pumping and spontaneous emission of a photon by the atom. Spontaneous emission in a random direction is the dissipative mechanism required to remove entropy from the atom . However, alternative cooling methods have been proposed for a single atom strongly coupled to a high-finesse cavity; the role of spontaneous emission is replaced by the escape of a photon from the cavity. Application of such cooling schemes would improve the performance of atom cavity systems for quantum information processing. Furthermore, as cavity cooling does not rely on spontaneous emission, it can be applied to systems that cannot be laser-cooled by conventional methods; these include molecules (which do not have a closed transition) and collective excitations of Bose condensates, which are destroyed by randomly directed recoil kicks. Here we demonstrate cavity cooling of single rubidium atoms stored in an intracavity dipole trap. The cooling mechanism results in extended storage times and improved localization of atoms. We estimate that the observed cooling rate is at least five times larger than that produced by free-space cooling methods, for comparable excitation of the atom.
Quantum routing of single photons in a system with two waveguides coupled to two whispering-gallery resonators (WGRs) are investigated theoretically. With a real-space full quantum theory, photonic scattering amplitudes along four ports of the wavegu ide network are analytically obtained. It is shown that, by adjusting the geometric and physical parameters of the two-WGR configuration, the quantum routing properties of single photons along the present waveguide network can be controlled effectively. For example, the routing capability from input waveguide to another one can significantly exceed 0.5 near the resonance point of scattering spectra, which can be achieved with only one resonator. By properly designing the distance between two WGRs and the waveguide-WGR coupling strengths, the transfer rate between the waveguides can also reach certain sufficiently high values even in the non-resonance regime. Moreover, Fano-like resonances in the scattering spectra are designable. The proposed system may provide a potential application in controlling single-photon quantum routing as a novel router.
Optical nonlinearities typically require macroscopic media, thereby making their implementation at the quantum level an outstanding challenge. Here we demonstrate a nonlinearity for one atom enclosed by two highly reflecting mirrors. We send laser li ght through the input mirror and record the light from the output mirror of the cavity. For weak laser intensity, we find the vacuum-Rabi resonances. But for higher intensities, we find an additional resonance. It originates from the fact that the cavity can accommodate only an integer number of photons and that this photon number determines the characteristic frequencies of the coupled atom-cavity system. We selectively excite such a frequency by depositing at once two photons into the system and find a transmission which increases with the laser intensity squared. The nonlinearity differs from classical saturation nonlinearities and is direct spectroscopic proof of the quantum nature of the atom-cavity system. It provides a photon-photon interaction by means of one atom, and constitutes a step towards a two-photon gateway or a single-photon transistor.
In our recent paper [1], we reported observations of photon blockade by one atom strongly coupled to an optical cavity. In support of these measurements, here we provide an expanded discussion of the general phenomenology of photon blockade as well a s of the theoretical model and results that were presented in Ref. [1]. We describe the general condition for photon blockade in terms of the transmission coefficients for photon number states. For the atom-cavity system of Ref. [1], we present the model Hamiltonian and examine the relationship of the eigenvalues to the predicted intensity correlation function. We explore the effect of different driving mechanisms on the photon statistics. We also present additional corrections to the model to describe cavity birefringence and ac-Stark shifts. [1] K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, Nature 436, 87 (2005).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا