ﻻ يوجد ملخص باللغة العربية
We report a systematic study of the contact resistance present at the interface between a metal (Ti) and graphene layers of different, known thickness. By comparing devices fabricated on 11 graphene flakes we demonstrate that the contact resistance is quantitatively the same for single-, bi-, and tri-layer graphene ($sim800 pm 200 Omega mu m$), and is in all cases independent of gate voltage and temperature. We argue that the observed behavior is due to charge transfer from the metal, causing the Fermi level in the graphene region under the contacts to shift far away from the charge neutrality point.
The extremely high carrier mobility and the unique band structure, make graphene very useful for field-effect transistor applications. According to several works, the primary limitation to graphene based transistor performance is not related to the m
The metal-graphene contact resistance is a technological bottleneck for the realization of viable graphene based electronics. We report a useful model to find the gate tunable components of this resistance determined by the sequential tunneling of ca
We discuss transport through double gated single and few layer graphene devices. This kind of device configuration has been used to investigate the modulation of the energy band structure through the application of an external perpendicular electric
We study the contact resistance and the transfer characteristics of back-gated field effect transistors of mono- and bi-layer graphene. We measure specific contact resistivity of ~7kohm*um2 and ~30kohm*um2 for Ni and Ti, respectively. We show that th
We have performed a metrological characterization of the quantum Hall resistance in a 1 $mu$m wide graphene Hall-bar. The longitudinal resistivity in the center of the $ u=pm 2$ quantum Hall plateaus vanishes within the measurement noise of 20 m$Omeg