في المقالة [بيتويفيتش 2006]، أثبت آ. بيتويفيتش خصائص مفيدة لأساليب $K_{i}(z)$ التي تجريد دالة الجهة اليسرى لكوريبا [Kurepa 1971]. في هذه الملاحظة، نقدم إثباتات مبسطة لأثنين من هذه النتائج، ونجيب على السؤال المفتوح الذي تم ذكره في [بيتويفيتش 2006]. وأخيرا، نناقش الخلوية التطورية لأساليب $K_{i}(z)$.
In the article [Petojevic 2006], A. Petojevi c verified useful properties of the $K_{i}(z)$ functions which generalize Kurepas [Kurepa 1971] left factorial function. In this note, we present simplified proofs of two of these results and we answer the open question stated in [Petojevic 2006]. Finally, we discuss the differential transcendency of the $K_{i}(z)$ functions.
We prove that if f and g are holomorphic functions on an open connected domain, with the same moduli on two intersecting segments, then f = g up to the multiplication of a unimodular constant, provided the segments make an angle that is an irrational
We study the adjunction property of the Jacquet-Emerton functor in certain neighborhoods of critical points in the eigencurve. As an application, we construct two-variable $p$-adic $L$-functions around critical points via Emertons representation theoretic approach.
We define generalised zeta functions associated to indefinite quadratic forms of signature (g-1,1) -- and more generally, to complex symmetric matrices whose imaginary part has signature (g-1,1) -- and we investigate their properties. These indefinit
A generalized Riemann hypothesis states that all zeros of the completed Hecke $L$-function $L^*(f,s)$ of a normalized Hecke eigenform $f$ on the full modular group should lie on the vertical line $Re(s)=frac{k}{2}.$ It was shown by Kohnen that there
We generalize Bangerts non-hyperbolicity result for uniformly tamed almost complex structures on standard symplectic $R^{2n}$ to asymtotically standard symplectic manifolds.