ﻻ يوجد ملخص باللغة العربية
In this paper we present a study of the early stages of unstable state evolution of systems with spatial symmetry changes. In contrast to the early time linear theory of unstable evolution described by Cahn, Hilliard, and Cook, we develop a generalized theory that predicts two distinct stages of the early evolution for symmetry breaking phase transitions. In the first stage the dynamics is dominated by symmetry preserving evolution. In the second stage, which shares some characteristics with the Cahn-Hilliard-Cook theory, noise driven fluctuations break the symmetry of the initial phase on a time scale which is large compared to the first stage for systems with long interaction ranges. To test the theory we present the results of numerical simulations of the initial evolution of a long-range antiferromagnetic Ising model quenched into an unstable region. We investigate two types of symmetry breaking transitions in this system: disorder-to-order and order-to-order transitions. For the order-to-order case, the Fourier modes evolve as a linear combination of exponentially growing or decaying terms with different time scales.
We extend the early time ordering theory of Cahn, Hilliard, and Cook (CHC) so that our generalized theory applies to solid-to-solid transitions. Our theory involves spatial symmetry breaking (the initial phase contains a symmetry not present in the
We provide numerical evidence that the Onsager symmetry remains valid for systems subject to a spatially dependent magnetic field, in spite of the broken time-reversal symmetry. In addition, for the simplest case in which the field strength varies on
Understanding thin sheets, ranging from the macro to the nanoscale, can allow control of mechanical properties such as deformability. Out-of-plane buckling due to in-plane compression can be a key feature in designing new materials. While thin-plate
Time-reversal symmetry of most conservative forces constrains the properties of linear transport in most physical systems. Here, I study the efficiency of energy transfer in oscillator networks where time-reversal symmetry is broken locally by Lorent
Dynamical response functions are standard tools for probing local physics near the equilibrium. They provide information about relaxation properties after the equilibrium state is weakly perturbed. In this paper we focus on systems which break the as