ﻻ يوجد ملخص باللغة العربية
We investigated the entropy bounds of the three types of statistics: para-Bose, para-Fermi and infinite statistics. We showed that the entropy bounds of the conventional Bose, Fermi statistics and their generalizations to parastatistics obey the $A^{3/4}$ law, while the entropy bound of infinite statistics obeys the area law. This suggests a close relationship between infinite statistics and quantum gravity.
We consider the entropy bounds recently conjectured by Fischler, Susskind and Bousso, and proven in certain cases by Flanagan, Marolf and Wald (FMW). One of the FMW derivations supposes a covariant form of the Bekenstein entropy bound, the consequenc
We calculate log corrections to the entropy of three-dimensional black holes with soft hairy boundary conditions. Their thermodynamics possesses some special features that preclude a naive direct evaluation of these corrections, so we follow two diff
The method of topological renormalization in anti-de Sitter (AdS) gravity consists in adding to the action a topological term which renders it finite, defining at the same time a well-posed variational problem. Here, we use this prescription to work
Quantum states with geometric duals are known to satisfy a stricter set of entropy inequalities than those obeyed by general quantum systems. The set of allowed entropies derived using the Ryu-Takayanagi (RT) formula defines the Holographic Entropy C
We propose an ansatz for OPE coefficients in chaotic conformal field theories which generalizes the Eigenstate Thermalization Hypothesis and describes any OPE coefficient involving heavy operators as a random variable with a Gaussian distribution. In