ترغب بنشر مسار تعليمي؟ اضغط هنا

Three types of statistics and the entropy bounds

348   0   0.0 ( 0 )
 نشر من قبل Yong Xiao
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigated the entropy bounds of the three types of statistics: para-Bose, para-Fermi and infinite statistics. We showed that the entropy bounds of the conventional Bose, Fermi statistics and their generalizations to parastatistics obey the $A^{3/4}$ law, while the entropy bound of infinite statistics obeys the area law. This suggests a close relationship between infinite statistics and quantum gravity.



قيم البحث

اقرأ أيضاً

68 - Andrew Chamblin 2003
We consider the entropy bounds recently conjectured by Fischler, Susskind and Bousso, and proven in certain cases by Flanagan, Marolf and Wald (FMW). One of the FMW derivations supposes a covariant form of the Bekenstein entropy bound, the consequenc es of which we explore. The derivation also suggests that the entropy contained in a vacuum spacetime, e.g. Schwarzschild, is related to the shear on congruences of null rays. We find evidence for this intuition, but in a surprising way. We compare the covariant entropy bound to certain earlier discussions of black hole entropy, and comment on the separate roles of quantum mechanics and gravity in the entropy bound.
We calculate log corrections to the entropy of three-dimensional black holes with soft hairy boundary conditions. Their thermodynamics possesses some special features that preclude a naive direct evaluation of these corrections, so we follow two diff erent approaches. The first one exploits that the BTZ black hole belongs to the spectrum of Brown-Henneaux as well as soft hairy boundary conditions, so that the respective log corrections are related through a suitable change of the thermodynamic ensemble. In the second approach the analogue of modular invariance is considered for dual theories with anisotropic scaling of Lifshitz type with dynamical exponent z at the boundary. On the gravity side such scalings arise for KdV-type boundary conditions, which provide a specific 1-parameter family of multi-trace deformations of the usual AdS3/CFT2 setup, with Brown-Henneaux corresponding to z=1 and soft hairy boundary conditions to the limiting case z=0. Both approaches agree in the case of BTZ black holes for any non-negative z. Finally, for soft hairy boundary conditions we show that not only the leading term, but also the log corrections to the entropy of black flowers endowed with affine u(1) soft hair charges exclusively depend on the zero modes and hence coincide with the ones for BTZ black holes.
The method of topological renormalization in anti-de Sitter (AdS) gravity consists in adding to the action a topological term which renders it finite, defining at the same time a well-posed variational problem. Here, we use this prescription to work out the thermodynamics of asymptotically locally anti-de Sitter (AlAdS) spacetimes, focusing on the physical properties of the Misner strings of both the Taub-NUT-AdS and Taub-Bolt-AdS solutions. We compute the contribution of the Misner string to the entropy by treating on the same footing the AdS and AlAdS sectors. As topological renormalization is found to correctly account for the physical quantities in the parity preserving sector of the theory, we then investigate the holographic consequences of adding also the Chern-Pontryagin topological invariant to the bulk action; in particular, we discuss the emergence of the parity-odd contribution in the boundary stress tensor.
Quantum states with geometric duals are known to satisfy a stricter set of entropy inequalities than those obeyed by general quantum systems. The set of allowed entropies derived using the Ryu-Takayanagi (RT) formula defines the Holographic Entropy C one (HEC). These inequalities are no longer satisfied once general quantum corrections are included by employing the Quantum Extremal Surface (QES) prescription. Nevertheless, the structure of the QES formula allows for a controlled study of how quantum contributions from bulk entropies interplay with HEC inequalities. In this paper, we initiate an exploration of this problem by relating bulk entropy constraints to boundary entropy inequalities. In particular, we show that requiring the bulk entropies to satisfy the HEC implies that the boundary entropies also satisfy the HEC. Further, we also show that requiring the bulk entropies to obey monogamy of mutual information (MMI) implies the boundary entropies also obey MMI.
We propose an ansatz for OPE coefficients in chaotic conformal field theories which generalizes the Eigenstate Thermalization Hypothesis and describes any OPE coefficient involving heavy operators as a random variable with a Gaussian distribution. In two dimensions this ansatz enables us to compute higher moments of the OPE coefficients and analyse two and four-point functions of OPE coefficients, which we relate to genus-2 partition functions and their squares. We compare the results of our ansatz to solutions of Einstein gravity in AdS$_3$, including a Euclidean wormhole that connects two genus-2 surfaces. Our ansatz reproduces the non-perturbative correction of the wormhole, giving it a physical interpretation in terms of OPE statistics. We propose that calculations performed within the semi-classical low-energy gravitational theory are only sensitive to the random nature of OPE coefficients, which explains the apparent lack of factorization in products of partition functions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا