ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of interspecies Feshbach resonances in an ultracold Rb-Cs mixture

125   0   0.0 ( 0 )
 نشر من قبل Francesca Ferlaino
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the observation of interspecies Feshbach resonances in an ultracold, optically trapped mixture of Rb and Cs atoms. In a magnetic field range up to 300 G we find 23 interspecies Feshbach resonances in the lowest spin channel and 2 resonances in a higher channel of the mixture. The extraordinarily rich Feshbach spectrum suggests the importance of different partial waves in both the open and closed channels of the scattering problem along with higher-order coupling mechanisms. Our results provide, on one hand, fundamental experimental input to characterize the Rb-Cs scattering properties and, on the other hand, identify possible starting points for the association of ultracold heteronuclear RbCs molecules.



قيم البحث

اقرأ أيضاً

151 - C. Marzok , B. Deh , C. Zimmermann 2008
We report on the observation of five Feshbach resonances in collisions between ultracold $^7$Li and $^{87}$Rb atoms in the absolute ground state mixture where both species are in their $|f,m_f>=|1,1>$ hyperfine states. The resonances appear as trap l osses for the $^7$Li cloud induced by inelastic heteronuclear three-body collisions. The magnetic field values where they occur are important quantities for an accurate determination of the interspecies interaction potentials. Results of coupled channels calculations based on the observed resonances are presented and refined potential parameters are given. A very broad Feshbach resonance centered around 649 G should allow for fine tuning of the interaction strength in future experiments.
We observe interspecies Feshbach resonances due to s-wave bound states in ultracold $^{39}$K-$^{133}$Cs scattering for three different spin mixtures. The resonances are observed as joint atom loss and heating of the K sample. We perform least-squares fits to obtain improved K-Cs interaction potentials that reproduce the observed resonances, and carry out coupled-channel calculations to characterize the scattering and bound-state properties for $^{39}$K-Cs, $^{40}$K-Cs and $^{41}$K-Cs. Our results open up the possibilities of tuning interactions in K-Cs atomic mixtures and of producing ultracold KCs molecules.
We report on the observation of Feshbach resonances in an ultracold mixture of two fermionic species, 6Li and 40K. The experimental data are interpreted using a simple asymptotic bound state model and full coupled channels calculations. This unambigu ously assigns the observed resonances in terms of various s- and p-wave molecular states and fully characterizes the ground-state scattering properties in any combination of spin states.
We report the observation of interspecies Feshbach resonances in an optically trapped mixture of $^{85}$Rb and $^{133}$Cs. We measure 14 interspecies features in the lowest spin channels for a magnetic field range from 0 to 700 G and show that they a re in good agreement with coupled-channel calculations. The interspecies background scattering length is close to zero over a large range of magnetic fields, permitting the sensitive detection of Feshbach resonances through interspecies thermalisation. Our results confirm the quality of the Rb-Cs potential curves and offer promising starting points for the production of ultracold polar molecules.
We have observed Feshbach resonances in elastic collisions between ultracold ${}^{52}$Cr atoms. This is the first observation of collisional Feshbach resonances in an atomic species with more than one valence electron. The zero nuclear spin of ${}^{5 2}$Cr and thus the absence of a Fermi-contact interaction leads to regularly-spaced resonance sequences. By comparing resonance positions with multi-channel scattering calculations we determine the s-wave scattering length of the lowest $^{2S+1}Sigma_{g}^{+}$ potentials to be $unit[112(14)]{a_0}$, $unit[58(6)]{a_0}$ and $-unit[7(20)]{a_0}$ for S=6, 4, and 2, respectively, where $a_{0}=unit[0.0529]{nm}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا