ﻻ يوجد ملخص باللغة العربية
BACKGROUND: The uncoupling protein (UCP) genes belong to the superfamily of electron transport carriers of the mitochondrial inner membrane. Members of the uncoupling protein family are involved in thermogenesis and determining the functional evolution of UCP genes is important to understand the evolution of thermo-regulation in vertebrates. RESULTS: Sequence similarity searches of genome and scaffold data identified homologues of UCP in eutherians, teleosts and the first squamates uncoupling proteins. Phylogenetic analysis was used to characterize the family evolutionary history by identifying two duplications early in vertebrate evolution and two losses in the avian lineage (excluding duplications within a species, excluding the losses due to incompletely sequenced taxa and excluding the losses and duplications inferred through mismatch of species and gene trees). Estimates of synonymous and nonsynonymous substitution rates (dN/dS) and more complex branch and site models suggest that the duplication events were not associated with positive Darwinian selection and that the UCP is constrained by strong purifying selection except for a single site which has undergone positive Darwinian selection, demonstrating that the UCP gene family must be highly conserved. CONCLUSION: We present a phylogeny describing the evolutionary history of the UCP gene family and show that the genes have evolved through duplications followed by purifying selection except for a single site in the mitochondrial matrix between the 5th and 6th alpha-helices which has undergone positive selection.
Several implicit methods to infer Horizontal Gene Transfer (HGT) focus on pairs of genes that have diverged only after the divergence of the two species in which the genes reside. This situation defines the edge set of a graph, the later-divergence-t
We propose a general mechanism for evolution to explain the diversity of gene and language. To quantify their common features and reveal the hidden structures, several statistical properties and patterns are examined based on a new method called the
Given a gene tree and a species tree, ancestral configurations represent the combinatorially distinct sets of gene lineages that can reach a given node of the species tree. They have been introduced as a data structure for use in the recursive comput
We consider evolution of a large population, where fitness of each organism is defined by many phenotypical traits. These traits result from expression of many genes. We propose a new model of gene regulation, where gene expression is controlled by a
The recent explosion in available genetic data has led to significant advances in understanding the demographic histories of and relationships among human populations. It is still a challenge, however, to infer reliable parameter values for complicat