ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of oxygen concentration on the structural and magnetic properties of LaRh1/2Mn1/2O3 thin films

108   0   0.0 ( 0 )
 نشر من قبل W. Prellier
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Epitaxial LaRh1/2Mn1/2O3 thin films have been grown on (001)-oriented LaAlO3 and SrTiO3 substrates using pulsed laser deposition. The optimized thin film samples are semiconducting and ferromagnetic with a Curie temperature close to 100 K, a coercive field of 1200 Oe, and a saturation magnetization of 1.7muB per formula unit. The surface texture, structural, electrical, and magnetic properties of the LaRh1/2Mn1/2O3 films was examined as a function of the oxygen concentration during deposition. While an elevated oxygen concentration yields thin films with optimal magnetic properties, slightly lower oxygen concentrations result in films with improved texture and crystallinity.



قيم البحث

اقرأ أيضاً

The correlation between magnetic and structural properties of Co_{2} FeAl (CFA) thin films of different thickness (10 nm<d< 100 nm) grown at room temperature on MgO-buffered Si/SiO2 substrates and annealed at 600lyxmathsym{textdegree}C has been studi ed. XRD measurements revealed an (011) out-of-plane texture growth of the films. The deduced lattice parameter increases with the film thickness. Moreover, pole figures showed no in-plane preferential growth orientation. The magneto-optical Kerr effect hysteresis loops showed the presence of a weak in-plane uniaxial anisotropy with a random easy axis direction. The coercive field measured with an applied field along the easy axis direction and the uniaxial anisotropy field increase linearly with the inverse of the CFA thickness. The microstrip line ferromagnetic resonance measurements for in-plane and perpendicular applied magnetic fields revealed that the effective magnetization and the uniaxial in-palne anisotropy field follow a linear variation versus the inverse CFA thickness. This allows deriving a perpendicular surface anisotropy coefficient of -1.86 erg/cm2
We studied the structural and magnetic properties of FeC~thin films deposited by co-sputtering of Fe and C targets in a direct current magnetron sputtering (dcMS) process at a substrate temperature (Ts) of 300, 523 and 773,K. The structure and morpho logy was measured using x-ray diffraction (XRD), x-ray absorption near edge spectroscopy (XANES) at Fe $L$ and C $K$-edges and atomic/magnetic force microscopy (AFM, MFM), respectively. An ultrathin (3,nm) $^{57}$FeC~layer, placed between relatively thick FeC~layers was used to estimate Fe self-diffusion taking place during growth at different Ts~using depth profiling measurements. Such $^{57}$FeC~layer was also used for $^{57}$Fe conversion electron M{o}ssbauer spectroscopy (CEMS) and nuclear resonance scattering (NRS) measurements, yielding the magnetic structure of this ultrathin layer. We found from XRD measurements that the structure formed at low Ts~(300,K) is analogous to Fe-based amorphous alloy and at high Ts~(773,K), pre-dominantly a tifc~phase has been formed. Interestingly, at an intermediate Ts~(523,K), a clear presence of tefc~(along with tifc~and Fe) can be seen from the NRS spectra. The microstructure obtained from AFM images was found to be in agreement with XRD results. MFM images also agrees well with NRS results as the presence of multi-magnetic components can be clearly seen in the sample grown at Ts~= 523,K. The information about the hybridization between Fe and C, obtained from Fe $L$ and C $K$-edges XANES also supports the results obtained from other measurements. In essence, from this work, experimental realization of tefc~has been demonstrated. It can be anticipated that by further fine-tuning the deposition conditions, even single phase tefc~phase can be realized which hitherto remains an experimental challenge.
We report on the magnetic properties of zinc ferrite thin film deposited on SrTiO$_3$ single crystal using pulsed laser deposition. X-ray diffraction result indicates the highly oriented single phase growth of the film along with the presence of the strain. In comparison to the bulk antiferromagnetic order, the as-deposited film has been found to exhibit ferrimagnetic ordering with a coercive field of 1140~Oe at 5~K. A broad maximum, at $approx$105~K, observed in zero-field cooled magnetization curve indicates the wide grain size distribution for the as-deposited film. Reduction in magnetization and blocking temperature has been observed after annealing in both argon as well as oxygen atmospheres, where the variation was found to be dependent on the annealing temperature.
The electronic and magnetic properties of transition metal dichalcogenides are known to be extremely sensitive to their structure. In this paper we study the effect of structure on the electronic and magnetic properties of mono- and bilayer $VSe_2$ f ilms grown using molecular beam epitaxy. $VSe_2$ has recently attracted much attention due to reports of emergent ferromagnetism in the 2D limit. To understand this important compound, high quality 1T and distorted 1T films were grown at temperatures of 200 $^text{o}$C and 450 $^text{o}$C respectively and studied using 4K Scanning Tunneling Microscopy/Spectroscopy. The measured density of states and the charge density wave (CDW) patterns were compared to band structure and phonon dispersion calculations. Films in the 1T phase reveal different CDW patterns in the first layer compared to the second. Interestingly, we find the second layer of the 1T-film shows a CDW pattern with 4a $times$ 4a periodicity which is the 2D version of the bulk CDW observed in this compound. Our phonon dispersion calculations confirm the presence of a soft phonon at the correct wavevector that leads to this CDW. In contrast, the first layer of distorted 1T phase films shows a strong stripe feature with varying periodicities, while the second layer displays no observable CDW pattern. Finally, we find that the monolayer 1T $VSe_2$ film is weakly ferromagnetic, with ~ $3.5 {mu}_B$ per unit similar to previous reports.
This work reports on the synthesis of CrO2 thin films by atmospheric pressure CVD using chromium trioxide (CrO3) and oxygen. Highly oriented (100) CrO2 films containing highly oriented (0001) Cr2O3 were grown onto Al2O3(0001) substrates. Films displa y a sharp magnetic transition at 375 K and a saturation magnetization of 1.92 Bohr magnetons per f.u., close to the bulk value of 2 Bohr magnetons per f.u. for the CrO2. Keywords: Chromium dioxide (CrO2), Atmospheric pressure CVD, Spintronics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا